×
Россия +7 (495) 139-20-33

Data-driven подход: серебряная пуля или старые грабли на новый лад?

Россия +7 (495) 139-20-33
Шрифт:
0 17627

Мы не можем управлять тем, что не можем измерить.

Питер Фердинанд Друкер,

один из ведущих теоретиков менеджмента XX века.

Data-driven подход

Data-driven проник почти во все сферы: data-driven менеджмент, маркетинг, тестирование, программирование и даже data-driven дизайн (хотя, казалось бы, в области, где правит креатив, основываться на сухих цифрах – последнее дело).

Интернет заполнен ошеломляющими кейсами, успешными примерами, графиками кратного роста всех возможных KPI. Складывается впечатление, что решения, основанные на данных, – панацея от всех ошибок и проблем. Данные трансформируют потаенную мечту любого бизнеса в реальность: никакой неопределенности, все решения принимаются сами собой и приводят к наилучшим результатам. Можно сосредоточиться на творческой части процесса.

Data-driven подход – это стратегия управления, основанная на данных.

Суть подхода: принятие любого решения должно быть обосновано влиянием на бизнес-цели компании и аргументировано цифрами.

Казалось бы, о чем тут говорить? Еще 100 лет назад любой лавочник принимал решения, основываясь на конкретных цифрах о доходах и расходах.

Традиционно принятие решений во многом основывается на экспертной оценке: мнении руководства, сложившихся в компании традициях, рекомендациях приглашенных экспертов, предыдущем успешном опыте и многих других факторах.

Data-driven подход, напротив, ставит данные во главу угла любого принимаемого решения.

История появления

Впервые термин data-driven упоминается в 90-х. На тот момент такой подход стал альтернативой функциональному или объектно-ориентированному программированию. Информационное поле трансформировалось, рынок digital набирал обороты, появлялись все более доступные вычислительные мощности. Идея data-driven преобразовалась и нашла применение в маркетинге и менеджменте.

Data-driven менеджмент

Менеджмент, основанный на данных, выполняет несколько важных функций:

  1. Максимизация эффективности вложений в бизнес. Микросегментация, управление количеством касаний, привлечение новой аудитории с учетом изменения пользовательского опыта и многое другое повышают эффективность вложений начиная от логистики и заканчивая кадровой политикой.
  2. Сокращение маркетинговых издержек. Рекламные кампании поддаются анализу вплоть до оценки эффективности конкретного рекламного объявления с учетом LTV привлеченных пользователей.
  3. Максимальная клиентоориентированность. Детальный анализ целевой аудитории, персональная коммуникация с клиентом, мониторинг отзывов, оценки удовлетворенности клиентов, проведение опросов, –– все это извлекается из данных.
  4. Оперативная реакция на изменения рынка. Отслеживание данных в режиме реального времени уже никого не удивляет, а грамотно настроенный мониторинг позволяет принимать решения молниеносно.
  5. Максимизация прибыли за счет всего вышеперечисленного.

В качестве примера рассмотрим крупнейшую в мире оптово-розничную сеть Walmart. 12 000 торговых точек, 2 миллиона сотрудников – без больших данных этого гиганта ждала бы участь динозавров. Однако у Walmart все хорошо. Компания отслеживает ситуацию во всех торговых точках, использует 200 внутренних и внешних источников информации и обрабатывает 2,5 петабайт данных в течение часа. Walmart оперативно корректирует цены на товары в соответствии с изменениями в поведении покупателей.

Какие задачи решает data-driven подход?

На этапе создания нового продукта (сайта, приложения, нового функционала в имеющемся проекте) принимается масса решений: каким именно он будет, для какой целевой аудитории, как будет выглядеть и нужен ли вообще.

Решения принимаются командой экспертов: владельцами бизнеса, маркетологами, дизайнерами, разработчиками. Этот момент – лучшее время применить data-driven подход.

В результате получаем ответы на важные вопросы:

  • Какую долю целевой аудитории продукта составляет тот или иной сегмент?
  • Какую прибыль принесет этот сегмент?
  • Какие задачи пользователя решит продукт?
  • Какой функционал будет востребован и насколько?
  • Каким количеством пользователей?
  • У каких конкурентов есть похожие реализации?

После необходимых исследований и анализа результатов получаем массу неожиданных инсайтов. Приходит понимание того, зачем создавать ту или иную фичу, какую цель она преследует и какой результат принесет.

Решение о редизайне или доработке имеющегося продукта также следует принимать, основываясь на данных.

В первую очередь нужна объективация ситуации, подтвержденная цифрами. В зависимости от специфики бизнеса, метрики, отражающие реальную картину, могут быть разными, но они должны быть. На этом же этапе оценивают степень удовлетворенности клиентов. Узнают, как именно они пользуются продуктом, какой функционал наиболее востребован, с какими проблемами сталкиваются, что хотели бы улучшить.

Гипотезы, появившиеся после обработки данных предыдущего этапа, нужно подтверждать цифрами с помощью количественных исследований.

Желание улучшить продукт или повысить конверсию приводит к разнообразным гипотезам. Решение об их внедрении принимают на основании данных. К таким данным относится информация о покупательском поведении имеющихся клиентов, совершенных покупках, составе заказов, среднем чеке и периодичности покупок. Анализ отзывов, жалоб, писем в клиентскую службу и техподдержку –– данные, из которых тоже можно получить важные инсайты.

Выстраивая эту информацию в единую картину, мы получаем точный и полный портрет каждого клиента. Грамотно выстроенная коммуникация – это максимальное удобство клиента и максимальная прибыль бизнеса.

Самые яркие и интересные решения data-driven подхода – в кейсах Яндекса и на портале Think With Google.

Недостатки data-driven подхода

Самый главный недостаток – данные не будут принимать решения за вас.

Первое решение, которое нужно принять, – нужен ли вашему бизнесу data-driven менеджмент.

Учитывайте нюансы:

  • Просто собирать данные недостаточно. Нужна инфраструктура сбора данных, их структуризация, систематизация и своевременная передача нужным людям в нужное время.
  • Эта инфраструктура требовательна к человеческому ресурсу. Сотрудников нужной квалификации искать сложно, и стоить они будут дорого.

Специалисты, которые работают с данными, умеют задавать правильные вопросы и отвечать на них, генерировать гипотезы, давать рекомендации и убеждать руководителей в том, что их гипотезы верны.

  • Чтобы делать все это, сотрудникам необходимы соответствующие навыки, обучение и поддержка.
  • Помимо инфраструктуры сбора данных, есть требования и к структуре самой организации. Общие цели и задачи, тесная взаимосвязь между бизнес-подразделениями, а также централизованная поддержка в обучении и формировании стандартов.
  • Чем больше данных собираем, тем больше времени тратим на их обработку. Тем труднее отделить значимые факты от незначимых и тем больше ресурсов тратится на проверку гипотез.

Если количество данных превышает способность менеджмента к их обработке и принятию решений, их ценность автоматически снижается до нуля.

  • Полученные данные, даже очень полные и очень точные, описывают прошлое. На основании таких данных строят предиктивные модели, но нельзя забывать, что в любой момент может прилететь «черный лебедь».
  • Для оценки нового функционала или инновационного продукта, которого раньше не существовало, data-driven подход неприменим.
  • Результаты внедрения data-driven подхода будут видны не сразу. К этому нужно быть готовым и не ждать чудес.
  • Пути назад нет. Если компания принимает решения, основываясь на данных, все остальные факторы (прошлый опыт, экспертное мнение, прочитанный в интернете кейс и т.д.) играют роль только на этапе формирования гипотез.

Резюме

В нашем поганом мире гарантии отсутствуют.

Профессионалы оперируют вероятностями.

Генерал Дж. С. Паттон

Так стоит ли ввязываться в сложное и затратное внедрение data-driven?

Однозначно стоит. Рынок не стоит на месте, пользователи становятся более требовательными, технологии сильнее проникают в жизнь каждого человека, и странно не пользоваться этими преимуществами.

Сбор данных – только первый этап. Далее следует их интерпретация, затем – принятие решений и корректировка стратегии бизнеса.

Важно, чтобы решения, основанные на данных, не привели к датацентричности, о которой предупреждает история дизайнера Google. Он покинул команду из-за чрезмерного «датацентризма». Вот как он прокомментировал свой уход:

Когда компания наводнена инженерами, они стараются любое решение сузить до одной логической задачи. Удалить всю субъективность и просто взглянуть на данные. Когда команда Google не могла выбрать между двумя оттенками синего, они проводили тестирование 41 оттенка, чтобы увидеть, какой работает лучше. Недавно я спорил о том, какой должна быть обводка в толщину: 3, 4 или 5 пикселей, и меня попросили подкрепить мое мнение данными. Буду скучать по работе с невероятно талантливыми и умными людьми, но не по дизайн-философии, которая пала от меча под названием «Данные».

С чего начинать внедрение?

Собрать команду.

  • Начать собирать данные из максимального количества источников (продукт, рекламные кабинеты, CRM/ERP система и т.д.).
  • Спроектировать архитектуру структуры данных, необходимых для принятия решений на всех этапах.
  • Наладить процесс передачи нужных данных нужным людям в нужное время.
  • Визуализировать данные.
  • Использовать!

Когда не работает количественный подход, применяйте качественные исследования, общайтесь с пользователями и просто включайте здравый смысл.

Важно понимать суть каждого подхода, возможности и применимость к конкретной ситуации. Когда вы работаете над чем-то, у вас есть видение того, к чему вы хотите прийти. Данные нужны, чтобы корректировать направление движения.

Например, с помощью HADI-циклов:

Data-driven подход

Собранные данные – источник гипотез. На основании гипотез проводят исследования, результаты проверяют с помощью данных, после чего делают выводы. Весь этот цикл направлен на решение задач бизнеса и получению наилучших результатов.

(Голосов: 7, Рейтинг: 3.86)
Читайте нас в Telegram - digital_bar

Есть о чем рассказать? Тогда присылайте свои материалы Ане Макаровой


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
«Юзабилити-лаборатория»: оставляйте заявку на участие!
Анна Макарова
381
комментарий
0
читателей
Полный профиль
Анна Макарова - Антон, добрый день! Ваш сайт не попал в основную выборку для юзабилити-анализа, но эксперты постараются сделать по вашему сайту видеоразбор (ю-ревью). Будем держать вас в курсе )
Тест по SEO – проверь свой уровень знаний
Артем Дорофеев
8
комментариев
0
читателей
Полный профиль
Артем Дорофеев - Полный текст вопроса со скриншотом панели прикладываю. Итого, что имеем: - на скриншоте отмечено, что это фильтр МПК - сайт коммерческий - рекламы на сайте нет С вероятностью 95% это ошибка (которая уже дважды случалась в Яндексе), когда они случайно "закосили" неповинные сайты. Тогда по запросу Платону фильтр быстренько снимали. Но вопрос даже не на знание этого нюанса. В любой непонятной ситуации, прежде чем что-либо предпринимать (особенно переписывать весь контент на сайте или менять дизайн, как указано в других вариантах) - фильтр следует подтвердить. Правильный ответ: "Написать письмо в техподдержку Яндекса".
Кейс: как за 30 дней вывести новый сайт в ТОП выдачи Google
Сергей
2
комментария
0
читателей
Полный профиль
Сергей - Прошёл у Паши курс год назад, пытался продвигать свой сайт portativ.org.ua, но особых продвижений нет. Наверное сео уже умерло??
Выбираем CMS для сайта с точки зрения SEO: базовые требования
SEO.RU
6
комментариев
0
читателей
Полный профиль
SEO.RU - Спасибо за замечание, действительно была допущена неточность - возможно информация была не так давно обновилась. Данные в статье поправим на актуальные.
Digital-marketing: как выжить в кризис. Опыт реальной компании
Maks
1
комментарий
0
читателей
Полный профиль
Maks - Спасибо за опыт Вашей компании, Иван Папусь. Интересно получилось! Желаю Вашему бизнесу стабильности и успешно пережить все кризисы))
100+ ресурсов по SEO для изучения поисковой оптимизации с нуля
Марина Ибушева
0
комментариев
0
читателей
Полный профиль
Марина Ибушева - Спасибо за добавление. Мы уже работаем над отдельным материалом про курсы, потому что одной статьи мало, чтобы охватить все крутое по обучению)
SEO must go on! Почему в кризис нельзя останавливать продвижение сайта
everystraus
43
комментария
0
читателей
Полный профиль
everystraus - Мы даже варианты не рассматривали. Если проект неустойчив, сразу предлагали сбавить обороты до минимума, но и так, чтоб не свалиться в штопор. Именно по СЕО чаще всего.
Как стандартизировать данные семантики с помощью логарифмов
Юлий
1
комментарий
0
читателей
Полный профиль
Юлий - Чем снималась коммерцелизация?
Гайд по работе с освобождающимися доменами: перехват, восстановление, создание сетки и заработок
Daniel Dan
1
комментарий
0
читателей
Полный профиль
Daniel Dan - Интересно и полезно читать, Спасибо!
Платные и бесплатные курсы по SEO и интернет-маркетингу для новичков и опытных специалистов
Алексей Терещенко
1
комментарий
0
читателей
Полный профиль
Алексей Терещенко - Запустил бесплатный марафон для SEO специалистов с нуля в Фейсбуке. Рекомендую начинать совой путь с него и дальше уже определятся, нравится направление или нет. Так же на базе обучающего марафона есть сообщестово в котором все в удобном формате общаются и постигают профессию. Моя миссия - создать сообщество крутых и образованых seo специалистов и поднять качество услуг на высокий уровень. Кому интересно, присоеденяйтесь www.facebook.com/groups/startseofree/
ТОП КОММЕНТАТОРОВ
Комментариев
910
Комментариев
834
Комментариев
554
Комментариев
540
Комментариев
483
Комментариев
381
Комментариев
373
Комментариев
262
Комментариев
249
Комментариев
171
Комментариев
156
Комментариев
141
Комментариев
121
Комментариев
113
Комментариев
97
Комментариев
97
Комментариев
96
Комментариев
89
Комментариев
80
Комментариев
77
Комментариев
67
Комментариев
60
Комментариев
60
Комментариев
59
Комментариев
57

Отправьте отзыв!
Отправьте отзыв!