×
Россия +7 (909) 261-97-71

Go Analytics! 2018: Machine learning в реальной жизни

Россия +7 (909) 261-97-71
Шрифт:
0 13997
Подпишитесь на нас в Telegram

5 апреля состоялась конференция Go Analytics!, в ходе которой представительницы Яндекса Мария Мансурова и Александра Кулачикова рассказали о том, как алгоритмы машинного обучения каждый день помогают сервисам Яндекса и пользователям Яндекс Метрики.

Мария Мансурова начала выступление с рассказа о том, как может применяться машинное обучение (ML). Инструмент может быть полезен для:

  • Предиктивной аналитики.
  • Улучшения продукта: рекомендаций, KPI.
  • Аналитики и работы с клиентами (сегментация, пользовательский граф).
  • Автоматизации процессов.

Александра Кулачикова отметила, что с помощью ML можно предсказывать:

  • Отток клиентов.
  • Конверсии и сумму заказа.
  • Выкуп заказа.
  • Спрос.

Представительницы Яндекса привели в пример одного из клиентов компании – сайт "220 вольт", для которого необходимо было предсказать конверсию. Специалисты компании собирали данные о действиях пользователей на сайте в течение двух месяцев и оценивали характеристики для каждого юзера – например, с какого браузера он зашел, а также его поведение (как часто заходит и т.д.). На основе этих данных оценивалась вероятность совершения покупки в течение следующей недели.

1.png

Для каждого из посетителей сайта выводился отдельный сегмент – по степени вероятности совершения покупки. После этого сегменты обновляли каждый день. Поэтому один и тот же пользователь мог переходить из одного сегмента в другой. Затем сегменты использовали для оптимизации рекламных кампаний и ретаргетинга.

Чтобы понять, все ли сделано правильно, необходимо было проверить, действительно ли пользователи, для которых была предсказана конверсия, конвертируются. Специалисты сравнили два сегмента: со средним и с высоким показателем конверсии. Результат был положительным, после чего для клиента был запущен тест, показавший хороший результат.

Однако предсказывать можно не только конверсию. Мария Мансурова продолжила выступление, рассказав о клиенте из travel-тематики. Для него необходимо было предсказать чек.

2.png

Для travel-тематики характерен поиск с разных устройств. Пользователи могут начинать интересоваться поездками по пути на работу, рассматривая варианты на мобильном устройстве, а совершить покупку – дома с десктопа.

3.png 

Для новой модели были выделены следующие значимые признаки:

Признак

Значимость

Число дней с последнего визита

0,2364

Устройство (mobile, desktop)

0,1201

Возрастная группа

0,1102

Достижение цели №1

0,0655

Число дней с первого визита

0,0614

Пол

0,0502

Достижение цели №2

0,0308

Достижение цели №3

0,0282

Число покупок на сайте

0,0274

Число купленных товаров на сайте

0,0257


Представители Яндекса отметили, что не все пользователи могут быть одинаково полезны:

  4.png

Работа с данной компанией еще не завершена, но Мария отметила, что Яндекс сообщит о результатах в будущем.

Александра также рассказала об опыте коллег из Яндекс.Маркета. Так, представителям сервиса нужно было добавить блок и рекомендацию цены магазина для карточки товара.

  5.png

Основной проблемой являлся тот факт, что в Маркете представлены разные магазины – многие из них довольно новые, где-то нет отзывов, какие-то не оформлены должным образом. Это могло оттолкнуть пользователей. Поэтому решено было начать ранжировать магазины по различным характеристикам с помощью машинного обучения.

Среди характеристик были следующие:

  • Цена
  • Наличие рейтинга
  • Наличие отзывов
  • География

Это позволило наиболее полезному для пользователей магазину повысить количество заказов на 30%.

Мария также рассказала о проблемах, с которыми рискуют столкнуться все:

  • Постановка задач и описание объекта. Задачу ставит человек, а машина (пока что) не умеет придумывать вопросы.
  • Данные не идеальны (неоднородны, неполные, их мало, могут содержать шум).
  • Хороший результат – это еще не конец.
  • Не всегда дело в модели.
  • Несбалансированные классы.
  • Переобучение.
  • Модель подглядывает правильные ответы.

Читайте также: Go Analytics! 2018: прогнозирование покупки и оптимизация рекламных кампаний на его основе

Есть о чем рассказать? Тогда присылайте свои материалы Марине Ибушевой


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
Как ИИ усиливает маркетинг и помогает общаться с пользователем
Гость
1
комментарий
0
читателей
Полный профиль
Гость - кайф! спасибо! надеюсь, что скоро этому в принципе будут учить маркетологов и будет нам счастье)
Тренды e-commerce 2026: рынок ждет отток с маркетплейсов?
Арина
1
комментарий
0
читателей
Полный профиль
Арина - Мы пробовали разные сервисы, но уже давно используем этот сервис tryon.mall-er.com у них есть и Визуальный поиск и Виртуальная примерка. Мы пользуемся Виртуальной примеркой очков и поиском и внедрили себе на сайт, сейчас порядка 80% нашего трафика с удовольствием пользуются данными функциями.
SEO-анализ сайта – новый сервис для технического аудита сайта
Олег Алексеев
1
комментарий
0
читателей
Полный профиль
Олег Алексеев - Сюда t.me/obivaaan или сюда t.me/olegalexeyev
Что будет с SEO в 2026: эксперты рынка подводят итоги и делают прогнозы на этот год
Марал Гаипова
142
комментария
0
читателей
Полный профиль
Марал Гаипова - Дмитрий, спасибо, эксперты и правда - топ)
Ozon добавил генерацию ответов на отзывы с помощью ИИ
Сергей
1
комментарий
0
читателей
Полный профиль
Сергей - Интересно добавят ли такую фичу, чтобы покупатель товара мог "свой" сгенерированный отзыв о товаре добавлять и получать за это балы? :)
Клиентам Сбера, предпочитающим Apple, вновь станет доступна бесконтактная оплата смартфоном
Борис Евгеньевич Романовский
1
комментарий
0
читателей
Полный профиль
Борис Евгеньевич Романовский - "Воспользоваться ей можно, даже если на смартфоне нет доступа к интернету." Попробовал , без интернета не войти в приложение "сбера"...
Мошенники придумали новую схему обмана с дипфейками
Константин Овсиенко
1
комментарий
0
читателей
Полный профиль
Константин Овсиенко - Мошенники в телеграм 2202206115977659 Юлия Владимировна К.
Где взять данные о GEO-видимости: 9 инструментов в одной статье
Евгений Молдовану
1
комментарий
0
читателей
Полный профиль
Евгений Молдовану - Хороший список, но используя подобные чекеры помните, что в GEO важен консенсус и если его нет, то на каждый запрос может формироваться свой ответ.
Высокая позиция в Яндексе: гарантированный билет в нейроответы или миф?
Старый сеошник
7
комментариев
0
читателей
Полный профиль
Старый сеошник - Так наивно повелся на заголовок и обещание исследования на 5 млн запросах. А попал на частные мнения трех сеошников с общими формулировками и аргументами, которые гуляют по интернету уже полгода почти)
Лучшие бесплатные редакторы видео
Сергей
22
комментария
0
читателей
Полный профиль
Сергей - По-моему, тут в минусах явно не хватает пункта о наложении водяного знака - можно все минусы стерпеть, но если у видео будет водяной знак, то зачем вообще таким приложением пользоваться? Если только для тестирования. А вы много тестируете? Вряд ли. Поэтому непонятно почему авторы статьи не внесли самый важный пункт в список недостатков. Лишь пару раз это всплывает во писаниях, а должно быть везде!
ТОП КОММЕНТАТОРОВ
Комментариев
910
Комментариев
834
Комментариев
554
Комментариев
540
Комментариев
483
Комментариев
393
Комментариев
373
Комментариев
262
Комментариев
249
Комментариев
171
Комментариев
156
Комментариев
142
Комментариев
126
Комментариев
121
Комментариев
100
Комментариев
97
Комментариев
97
Комментариев
96
Комментариев
80
Комментариев
77
Комментариев
74
Комментариев
67
Комментариев
66
Комментариев
60
Комментариев
59

Отправьте отзыв!
Отправьте отзыв!