×
Россия +7 (495) 139-20-33

Go Analytics! 2018: Machine learning в реальной жизни

Россия +7 (495) 139-20-33
Шрифт:
0 11494

5 апреля состоялась конференция Go Analytics!, в ходе которой представительницы Яндекса Мария Мансурова и Александра Кулачикова рассказали о том, как алгоритмы машинного обучения каждый день помогают сервисам Яндекса и пользователям Яндекс Метрики.

Мария Мансурова начала выступление с рассказа о том, как может применяться машинное обучение (ML). Инструмент может быть полезен для:

  • Предиктивной аналитики.
  • Улучшения продукта: рекомендаций, KPI.
  • Аналитики и работы с клиентами (сегментация, пользовательский граф).
  • Автоматизации процессов.

Александра Кулачикова отметила, что с помощью ML можно предсказывать:

  • Отток клиентов.
  • Конверсии и сумму заказа.
  • Выкуп заказа.
  • Спрос.

Представительницы Яндекса привели в пример одного из клиентов компании – сайт "220 вольт", для которого необходимо было предсказать конверсию. Специалисты компании собирали данные о действиях пользователей на сайте в течение двух месяцев и оценивали характеристики для каждого юзера – например, с какого браузера он зашел, а также его поведение (как часто заходит и т.д.). На основе этих данных оценивалась вероятность совершения покупки в течение следующей недели.

1.png

Для каждого из посетителей сайта выводился отдельный сегмент – по степени вероятности совершения покупки. После этого сегменты обновляли каждый день. Поэтому один и тот же пользователь мог переходить из одного сегмента в другой. Затем сегменты использовали для оптимизации рекламных кампаний и ретаргетинга.

Чтобы понять, все ли сделано правильно, необходимо было проверить, действительно ли пользователи, для которых была предсказана конверсия, конвертируются. Специалисты сравнили два сегмента: со средним и с высоким показателем конверсии. Результат был положительным, после чего для клиента был запущен тест, показавший хороший результат.

Однако предсказывать можно не только конверсию. Мария Мансурова продолжила выступление, рассказав о клиенте из travel-тематики. Для него необходимо было предсказать чек.

2.png

Для travel-тематики характерен поиск с разных устройств. Пользователи могут начинать интересоваться поездками по пути на работу, рассматривая варианты на мобильном устройстве, а совершить покупку – дома с десктопа.

3.png 

Для новой модели были выделены следующие значимые признаки:

Признак

Значимость

Число дней с последнего визита

0,2364

Устройство (mobile, desktop)

0,1201

Возрастная группа

0,1102

Достижение цели №1

0,0655

Число дней с первого визита

0,0614

Пол

0,0502

Достижение цели №2

0,0308

Достижение цели №3

0,0282

Число покупок на сайте

0,0274

Число купленных товаров на сайте

0,0257


Представители Яндекса отметили, что не все пользователи могут быть одинаково полезны:

  4.png

Работа с данной компанией еще не завершена, но Мария отметила, что Яндекс сообщит о результатах в будущем.

Александра также рассказала об опыте коллег из Яндекс.Маркета. Так, представителям сервиса нужно было добавить блок и рекомендацию цены магазина для карточки товара.

  5.png

Основной проблемой являлся тот факт, что в Маркете представлены разные магазины – многие из них довольно новые, где-то нет отзывов, какие-то не оформлены должным образом. Это могло оттолкнуть пользователей. Поэтому решено было начать ранжировать магазины по различным характеристикам с помощью машинного обучения.

Среди характеристик были следующие:

  • Цена
  • Наличие рейтинга
  • Наличие отзывов
  • География

Это позволило наиболее полезному для пользователей магазину повысить количество заказов на 30%.

Мария также рассказала о проблемах, с которыми рискуют столкнуться все:

  • Постановка задач и описание объекта. Задачу ставит человек, а машина (пока что) не умеет придумывать вопросы.
  • Данные не идеальны (неоднородны, неполные, их мало, могут содержать шум).
  • Хороший результат – это еще не конец.
  • Не всегда дело в модели.
  • Несбалансированные классы.
  • Переобучение.
  • Модель подглядывает правильные ответы.

Читайте также: Go Analytics! 2018: прогнозирование покупки и оптимизация рекламных кампаний на его основе

(Голосов: 5, Рейтинг: 5)
Читайте нас в Telegram - digital_bar

Есть о чем рассказать? Тогда присылайте свои материалы Ане Макаровой


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
Кейс: как за 30 дней вывести новый сайт в ТОП выдачи Google
Сергей
2
комментария
0
читателей
Полный профиль
Сергей - Прошёл у Паши курс год назад, пытался продвигать свой сайт portativ.org.ua, но особых продвижений нет. Наверное сео уже умерло??
Облако тегов в интернет-магазине: прикладная инструкция по увеличению трафика
Юлия Дмитриева
2
комментария
0
читателей
Полный профиль
Юлия Дмитриева - Согласна с вами, что в любом деле важен индивидуальный подход:)
Специалисты в Рунете заметили глобальную накрутку поведенческих факторов
Дмитрий Кулаевский
1
комментарий
0
читателей
Полный профиль
Дмитрий Кулаевский - кто-нибудь знает как с этим бороться? очень много такого трафа идёт с июля, сайт сильно просел
Как стандартизировать данные семантики с помощью логарифмов
Юлий
1
комментарий
0
читателей
Полный профиль
Юлий - Чем снималась коммерцелизация?
Яндекс возобновил «показательные порки» за накрутку поведенческих факторов
Антон
1
комментарий
0
читателей
Полный профиль
Антон - Никакой не выпал. Кроме клиентского сайта, который проседал из-за скрутки, о чем Я.Поиску сообщали и клиенту тоже. Ноль реакции от поисковика (продолжайте развивать сайт, никаких проблем нет ...). Клиенту надоело и он заказал накрутку у подрядчиков. Мы искренне ждали бана, сообщали об этом клиенту, т.к. мы все таки делаем все остальное для развития. Как итог: с лета полет нормальный. Сайт растет, никаких проблем. Случайно даже стажер палил тех поддержке факт использования накрутки. И ничего. Сайт растет дальше. Если они не могут ничего принять даже после признания факта накрутки, что они могут сделать с жалобами на накрутку конкурентов?! Никогда не одобряли данные методы, но ... похоже ... все работает :)
«Нет в наличии»: что делать с карточками отсутствующего товара
freyr energy
1
комментарий
0
читателей
Полный профиль
freyr energy - Thank you so much @ admin for share your valuable thoughts and ideas We always enjoy your articles its inspired a lot by reading your articles day by day. So please accept my thanks and congrats for success of your latest series. We hope, you should published more better articles like ever before solar rooftop
Яндекс тестирует оценки сайта в сниппете
Сергей Демин
8
комментариев
0
читателей
Полный профиль
Сергей Демин - вопрос такой: где получить оценку о сайте? а не об организации
15 языков программирования, за знание которых платят выше среднего
Любомир
2
комментария
0
читателей
Полный профиль
Любомир - Ну и ЗП: ни слова о том что она варируеться от 0 до 100 000$ в год!!! Что до высокой зп надо несколько лет етим заниматся! Что 100 000$ в год на западе заробатывают, а где нибудь в азиатских страннах 100$ в год. В СНГ первые годы в разработчика ЗП как в грузчика на складе - это где то 4-5 тыс. долларов в год, и уже имея несколько лет опыта возможно дойти до 10-20 тыс. долларов в год! Почему нет конкретики? Меня лично нервирует то что людям внушают великие ЗП в АйТи, а люди тупые и ведутся!!!!
Локальное продвижение интернет-магазина: как получить дополнительный трафик из регионов
Саша Дружин
2
комментария
0
читателей
Полный профиль
Саша Дружин - У меня был опыт раскрутки сайта на иностранных рынок, например для анголязычной аудитории. В целом отличия есть, хоть и небольшие. Больше всегда прироста получил после закупки ссылок от www.e-raskrutka.ru/anothercountry , они достаточно качественно работают на англоязычную аудиторию и могут лаконично вписаться в любое обсуждение. Можно самому попробовать заказать такие ссылки и посмотреть на результат.
От количества к качеству: что происходит с рекламой в Рунете
Евгений
1
комментарий
0
читателей
Полный профиль
Евгений - Истину глаголите!
ТОП КОММЕНТАТОРОВ
Комментариев
910
Комментариев
834
Комментариев
554
Комментариев
540
Комментариев
483
Комментариев
384
Комментариев
373
Комментариев
262
Комментариев
249
Комментариев
171
Комментариев
156
Комментариев
141
Комментариев
121
Комментариев
113
Комментариев
97
Комментариев
97
Комментариев
96
Комментариев
91
Комментариев
80
Комментариев
77
Комментариев
67
Комментариев
60
Комментариев
60
Комментариев
59
Комментариев
57

Отправьте отзыв!
Отправьте отзыв!