×
Россия +7 (495) 139-20-33

Go Analytics! 2018: Machine learning в реальной жизни

Россия +7 (495) 139-20-33
Шрифт:
0 12693

5 апреля состоялась конференция Go Analytics!, в ходе которой представительницы Яндекса Мария Мансурова и Александра Кулачикова рассказали о том, как алгоритмы машинного обучения каждый день помогают сервисам Яндекса и пользователям Яндекс Метрики.

Мария Мансурова начала выступление с рассказа о том, как может применяться машинное обучение (ML). Инструмент может быть полезен для:

  • Предиктивной аналитики.
  • Улучшения продукта: рекомендаций, KPI.
  • Аналитики и работы с клиентами (сегментация, пользовательский граф).
  • Автоматизации процессов.

Александра Кулачикова отметила, что с помощью ML можно предсказывать:

  • Отток клиентов.
  • Конверсии и сумму заказа.
  • Выкуп заказа.
  • Спрос.

Представительницы Яндекса привели в пример одного из клиентов компании – сайт "220 вольт", для которого необходимо было предсказать конверсию. Специалисты компании собирали данные о действиях пользователей на сайте в течение двух месяцев и оценивали характеристики для каждого юзера – например, с какого браузера он зашел, а также его поведение (как часто заходит и т.д.). На основе этих данных оценивалась вероятность совершения покупки в течение следующей недели.

1.png

Для каждого из посетителей сайта выводился отдельный сегмент – по степени вероятности совершения покупки. После этого сегменты обновляли каждый день. Поэтому один и тот же пользователь мог переходить из одного сегмента в другой. Затем сегменты использовали для оптимизации рекламных кампаний и ретаргетинга.

Чтобы понять, все ли сделано правильно, необходимо было проверить, действительно ли пользователи, для которых была предсказана конверсия, конвертируются. Специалисты сравнили два сегмента: со средним и с высоким показателем конверсии. Результат был положительным, после чего для клиента был запущен тест, показавший хороший результат.

Однако предсказывать можно не только конверсию. Мария Мансурова продолжила выступление, рассказав о клиенте из travel-тематики. Для него необходимо было предсказать чек.

2.png

Для travel-тематики характерен поиск с разных устройств. Пользователи могут начинать интересоваться поездками по пути на работу, рассматривая варианты на мобильном устройстве, а совершить покупку – дома с десктопа.

3.png 

Для новой модели были выделены следующие значимые признаки:

Признак

Значимость

Число дней с последнего визита

0,2364

Устройство (mobile, desktop)

0,1201

Возрастная группа

0,1102

Достижение цели №1

0,0655

Число дней с первого визита

0,0614

Пол

0,0502

Достижение цели №2

0,0308

Достижение цели №3

0,0282

Число покупок на сайте

0,0274

Число купленных товаров на сайте

0,0257


Представители Яндекса отметили, что не все пользователи могут быть одинаково полезны:

  4.png

Работа с данной компанией еще не завершена, но Мария отметила, что Яндекс сообщит о результатах в будущем.

Александра также рассказала об опыте коллег из Яндекс.Маркета. Так, представителям сервиса нужно было добавить блок и рекомендацию цены магазина для карточки товара.

  5.png

Основной проблемой являлся тот факт, что в Маркете представлены разные магазины – многие из них довольно новые, где-то нет отзывов, какие-то не оформлены должным образом. Это могло оттолкнуть пользователей. Поэтому решено было начать ранжировать магазины по различным характеристикам с помощью машинного обучения.

Среди характеристик были следующие:

  • Цена
  • Наличие рейтинга
  • Наличие отзывов
  • География

Это позволило наиболее полезному для пользователей магазину повысить количество заказов на 30%.

Мария также рассказала о проблемах, с которыми рискуют столкнуться все:

  • Постановка задач и описание объекта. Задачу ставит человек, а машина (пока что) не умеет придумывать вопросы.
  • Данные не идеальны (неоднородны, неполные, их мало, могут содержать шум).
  • Хороший результат – это еще не конец.
  • Не всегда дело в модели.
  • Несбалансированные классы.
  • Переобучение.
  • Модель подглядывает правильные ответы.

Читайте также: Go Analytics! 2018: прогнозирование покупки и оптимизация рекламных кампаний на его основе

(Голосов: 5, Рейтинг: 5)
Читайте нас в Telegram - digital_bar

Есть о чем рассказать? Тогда присылайте свои материалы Марине Ибушевой


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
13 инструментов для SEO-специалиста, актуальных в 2022 году
Саша
6
комментариев
0
читателей
Полный профиль
Саша - кажись какой-то британец
Продуктовый подход в SEO: новая эпоха поисковой оптимизации
Борис
1
комментарий
0
читателей
Полный профиль
Борис - Почитал и спич очень близок к тому, что гугловоды говорят у себя на курсере. К комменту ниже: инклюзивность, доступность - это часть маркетинга и seo становится. Удивился даже, что в снг о таком слышали)))))
Скоринг запросов: почему он необходим при сборе семантического ядра
Илья Горбачев
3
комментария
0
читателей
Полный профиль
Илья Горбачев - Сбор сезонности в последней версии находится на вкладке "Парсинг" и вызывается кликом по иконке с графиком на черном фоне. Только он собирает общую частоту, поэтому лучше собирать данные с фраз (маркеров), которые не пересекаются в реальных запросах.
Альманах фатальных ошибок b2b-сайта: как владельцы бизнеса обрекают сайты на бесславное существование. Часть первая
Сергей Ерофеев
3
комментария
0
читателей
Полный профиль
Сергей Ерофеев - Спасибо за комментарий! Вы правы, если за CMS следит заинтересованный профессионал - риски минимальны. Но мы же с вами понимаем, что: а) Не каждый разработчик делает все, как "для себя". б) После создания сайта разработчик редко остается на проекте в) Часто разработчик не является маркетологом. В этом случае принцип "функционал работает и этого достаточно" может быть на первом месте. Мы тоже видели большое количество хороших и качественных проектов на бесплатных CMS, но проблемных проектов мы видели сильно больше. Просто статистика.
Почему не стоит отказываться от SEO на этапе разработки
Максимус
3
комментария
0
читателей
Полный профиль
Максимус - Я уже сделал и сегодня в первый класс отвёл!
Как автоматизировать мессенджеры для бизнеса в CRM-системе
Алиналина
1
комментарий
0
читателей
Полный профиль
Алиналина - Кстати да. Но мы зарегались, CRMка реально интересная
Санкции поисковых систем: как узнать, что сайт попал под фильтры. Обзор главных инструментов
Volodyka Filipov
6
комментариев
0
читателей
Полный профиль
Volodyka Filipov - Нужно не крутить, а по честному развивать)))
Белые и серые методы продвижения. Тренды 2023
Гость
1
комментарий
0
читателей
Полный профиль
Гость - Я тоже заметил. Если встать в 5 утра и шёпотом сказать 3 раза Ажгибесов. Сайт в гугле растёт.
Как попасть в топ-10 Яндекса и Google при продвижении сайта на регион Молдовы
Гость
7
комментариев
0
читателей
Полный профиль
Гость - "В первое время наши работы продолжали давать результат (сайт несколько месяцев рос), а потом начал постепенно терять позиции. По этой причине заказчик решил возобновить сотрудничество и вернулся в июле 2022. Мы еще ведем работы по восстановлению утраченных результатов." Хитрожопый клиент.
О важности коммерческих факторов в SEO. Кейс
Геннадий Sape Agency
3
комментария
0
читателей
Полный профиль
Геннадий Sape Agency - Спасибо, Костя!
ТОП КОММЕНТАТОРОВ
Комментариев
910
Комментариев
834
Комментариев
554
Комментариев
540
Комментариев
483
Комментариев
385
Комментариев
373
Комментариев
262
Комментариев
249
Комментариев
171
Комментариев
156
Комментариев
141
Комментариев
121
Комментариев
115
Комментариев
100
Комментариев
97
Комментариев
97
Комментариев
96
Комментариев
80
Комментариев
77
Комментариев
74
Комментариев
67
Комментариев
63
Комментариев
60
Комментариев
59

Отправьте отзыв!
Отправьте отзыв!