×
Россия +7 (495) 139-20-33

Go Analytics! 2018: Machine learning в реальной жизни

Россия +7 (495) 139-20-33
Шрифт:
0 12173

5 апреля состоялась конференция Go Analytics!, в ходе которой представительницы Яндекса Мария Мансурова и Александра Кулачикова рассказали о том, как алгоритмы машинного обучения каждый день помогают сервисам Яндекса и пользователям Яндекс Метрики.

Мария Мансурова начала выступление с рассказа о том, как может применяться машинное обучение (ML). Инструмент может быть полезен для:

  • Предиктивной аналитики.
  • Улучшения продукта: рекомендаций, KPI.
  • Аналитики и работы с клиентами (сегментация, пользовательский граф).
  • Автоматизации процессов.

Александра Кулачикова отметила, что с помощью ML можно предсказывать:

  • Отток клиентов.
  • Конверсии и сумму заказа.
  • Выкуп заказа.
  • Спрос.

Представительницы Яндекса привели в пример одного из клиентов компании – сайт "220 вольт", для которого необходимо было предсказать конверсию. Специалисты компании собирали данные о действиях пользователей на сайте в течение двух месяцев и оценивали характеристики для каждого юзера – например, с какого браузера он зашел, а также его поведение (как часто заходит и т.д.). На основе этих данных оценивалась вероятность совершения покупки в течение следующей недели.

1.png

Для каждого из посетителей сайта выводился отдельный сегмент – по степени вероятности совершения покупки. После этого сегменты обновляли каждый день. Поэтому один и тот же пользователь мог переходить из одного сегмента в другой. Затем сегменты использовали для оптимизации рекламных кампаний и ретаргетинга.

Чтобы понять, все ли сделано правильно, необходимо было проверить, действительно ли пользователи, для которых была предсказана конверсия, конвертируются. Специалисты сравнили два сегмента: со средним и с высоким показателем конверсии. Результат был положительным, после чего для клиента был запущен тест, показавший хороший результат.

Однако предсказывать можно не только конверсию. Мария Мансурова продолжила выступление, рассказав о клиенте из travel-тематики. Для него необходимо было предсказать чек.

2.png

Для travel-тематики характерен поиск с разных устройств. Пользователи могут начинать интересоваться поездками по пути на работу, рассматривая варианты на мобильном устройстве, а совершить покупку – дома с десктопа.

3.png 

Для новой модели были выделены следующие значимые признаки:

Признак

Значимость

Число дней с последнего визита

0,2364

Устройство (mobile, desktop)

0,1201

Возрастная группа

0,1102

Достижение цели №1

0,0655

Число дней с первого визита

0,0614

Пол

0,0502

Достижение цели №2

0,0308

Достижение цели №3

0,0282

Число покупок на сайте

0,0274

Число купленных товаров на сайте

0,0257


Представители Яндекса отметили, что не все пользователи могут быть одинаково полезны:

  4.png

Работа с данной компанией еще не завершена, но Мария отметила, что Яндекс сообщит о результатах в будущем.

Александра также рассказала об опыте коллег из Яндекс.Маркета. Так, представителям сервиса нужно было добавить блок и рекомендацию цены магазина для карточки товара.

  5.png

Основной проблемой являлся тот факт, что в Маркете представлены разные магазины – многие из них довольно новые, где-то нет отзывов, какие-то не оформлены должным образом. Это могло оттолкнуть пользователей. Поэтому решено было начать ранжировать магазины по различным характеристикам с помощью машинного обучения.

Среди характеристик были следующие:

  • Цена
  • Наличие рейтинга
  • Наличие отзывов
  • География

Это позволило наиболее полезному для пользователей магазину повысить количество заказов на 30%.

Мария также рассказала о проблемах, с которыми рискуют столкнуться все:

  • Постановка задач и описание объекта. Задачу ставит человек, а машина (пока что) не умеет придумывать вопросы.
  • Данные не идеальны (неоднородны, неполные, их мало, могут содержать шум).
  • Хороший результат – это еще не конец.
  • Не всегда дело в модели.
  • Несбалансированные классы.
  • Переобучение.
  • Модель подглядывает правильные ответы.

Читайте также: Go Analytics! 2018: прогнозирование покупки и оптимизация рекламных кампаний на его основе

(Голосов: 5, Рейтинг: 5)
Читайте нас в Telegram - digital_bar

Есть о чем рассказать? Тогда присылайте свои материалы Марине Ибушевой


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
Ссылочный апдейт Google: что изменится для SEO-специалистов в рунете
Тимур
6
комментариев
0
читателей
Полный профиль
Тимур - Понял, спасибо за информацию.
3 основные ошибки, которые допускают владельцы сайтов при продвижении
Виктор Гаврюков
31
комментарий
1
читатель
Полный профиль
Виктор Гаврюков - Не обращай внимания_) Если у тебя хороший ресурс, то ты будешь первоисточником, и все кто своровал, автоматически начнут на тебя ссылаться, точнее, так гугл будет считать_)
Зарабатываем с помощью текстов: как создать уникальный контент и монетизировать сайт
Максим Зубарев
1
комментарий
0
читателей
Полный профиль
Максим Зубарев - Просто каждый должен заниматься своим делом и о нем и писать ))) сапа хороша в ссылках, вот о линкбилдинге их материалы заходят хорошо. Сапа не пишет статьи ))) Поэтому ничего удивительного
Тильда для SEO-продвижения и бизнеса: плюсы и минусы конструктора сайтов
Сергей Садовничий
2
комментария
0
читателей
Полный профиль
Сергей Садовничий - Есть страницы где 79 для мобайла / 97 для десктопа без вообще каких либо заморочек. Есть страницы на Тильда у которых показатели для мобайла 60 - и эти страницы находятся в ТОП 1-3 по всем интересующим ключам. С показателями по скорости 60 Google Search Console заявляет, что страница оптимизирована для мобильных устройств и является удобной для пользователей. Рекомендую в первую очередь делать акцент на контенте, качестве внутренней оптимизации, наличии коммерческих факторов (если это не инфо страница) и над ссылочным а уж потом пытаться подтягивать показатели по PageSpeed Insights. Но как правило страницы выходят в ТОП и необходимости добиться PageSpeed Insights за 80 нет!
Сравнительная статистика уровня жизни SEO-специалистов в семи странах, включая Россию
Рустам
1
комментарий
0
читателей
Полный профиль
Рустам - Средняя температура по больнице, подсчет даже близко не отображает действительность, особенно учитывая разность цен и уровня зп в разных частях больших стран (США, Канада, Россия)
Скучное, но эффективное SEO: 3 кита успешной поисковой оптимизации
Bquadro
2
комментария
0
читателей
Полный профиль
Bquadro - Не совсем так) Совет про техническую оптимизацию и структуру сайта равноценен как для коммерческого сайта, так и для информационного. Эти два правила универсальны и влияют на ранжирование в поиске вне зависимости от типа ресурса.
Как оптимизировать картинки для SEO-продвижения: чек-лист
Алексей Махметхажиев
6
комментариев
0
читателей
Полный профиль
Алексей Махметхажиев - Надо упомянуть про ленивую загрузку lazy load, что её можно сделать с вредом для картинок и их индексации и можно сделать всё правильно. Есть отложка вредная.)
Как доработка структуры вывела сайт в ТОП-10 Google и увеличила трафик в 2 раза. Кейс Связной Трэвел
Дмитрий
3
комментария
0
читателей
Полный профиль
Дмитрий - Вероятнее всего было обновление Google и позиции были снижены в связи с низкой скоростью загрузки страниц (так как доработке ведутся не только по SEO, но и в целом по функционалу сайта, появляются новые скрипты). В этот период в Google Search Console увеличилось количество страниц с низкой скоростью загрузки. Мы выявили несколько проблем, которые снижают скорость загрузки страниц и выдали рекомендации по их устранению. Пока данные рекомендации находятся в работе. Также был проведен анализ EAT факторов и проверка сайта на соответствие требованиям Google к YMYL сайта, выданы рекомендации по доработке данных факторов (ждем внедрения наших рекомендаций, поделимся потом результатами).
Известность бренда SEO-компаний 2021
Mike
9
комментариев
0
читателей
Полный профиль
Mike - я конкретного человека спросил. ваша реклама не особо интересует. тем более вы даже не удосужились дать примеры статей
Рост ботных переходов на сайт: как интерпретировать и что делать
Mike
9
комментариев
0
читателей
Полный профиль
Mike - как это проверить? что товары выводится именно на основе спроса, а не по заданным алгоритмам?
ТОП КОММЕНТАТОРОВ
Комментариев
910
Комментариев
834
Комментариев
554
Комментариев
540
Комментариев
483
Комментариев
385
Комментариев
373
Комментариев
262
Комментариев
249
Комментариев
171
Комментариев
156
Комментариев
141
Комментариев
121
Комментариев
115
Комментариев
97
Комментариев
97
Комментариев
96
Комментариев
94
Комментариев
80
Комментариев
77
Комментариев
74
Комментариев
67
Комментариев
62
Комментариев
60
Комментариев
59

Отправьте отзыв!
Отправьте отзыв!