×
Россия +7 (495) 139-20-33

Go Analytics! 2018: Machine learning в реальной жизни

Россия +7 (495) 139-20-33
Шрифт:
0 12012

5 апреля состоялась конференция Go Analytics!, в ходе которой представительницы Яндекса Мария Мансурова и Александра Кулачикова рассказали о том, как алгоритмы машинного обучения каждый день помогают сервисам Яндекса и пользователям Яндекс Метрики.

Мария Мансурова начала выступление с рассказа о том, как может применяться машинное обучение (ML). Инструмент может быть полезен для:

  • Предиктивной аналитики.
  • Улучшения продукта: рекомендаций, KPI.
  • Аналитики и работы с клиентами (сегментация, пользовательский граф).
  • Автоматизации процессов.

Александра Кулачикова отметила, что с помощью ML можно предсказывать:

  • Отток клиентов.
  • Конверсии и сумму заказа.
  • Выкуп заказа.
  • Спрос.

Представительницы Яндекса привели в пример одного из клиентов компании – сайт "220 вольт", для которого необходимо было предсказать конверсию. Специалисты компании собирали данные о действиях пользователей на сайте в течение двух месяцев и оценивали характеристики для каждого юзера – например, с какого браузера он зашел, а также его поведение (как часто заходит и т.д.). На основе этих данных оценивалась вероятность совершения покупки в течение следующей недели.

1.png

Для каждого из посетителей сайта выводился отдельный сегмент – по степени вероятности совершения покупки. После этого сегменты обновляли каждый день. Поэтому один и тот же пользователь мог переходить из одного сегмента в другой. Затем сегменты использовали для оптимизации рекламных кампаний и ретаргетинга.

Чтобы понять, все ли сделано правильно, необходимо было проверить, действительно ли пользователи, для которых была предсказана конверсия, конвертируются. Специалисты сравнили два сегмента: со средним и с высоким показателем конверсии. Результат был положительным, после чего для клиента был запущен тест, показавший хороший результат.

Однако предсказывать можно не только конверсию. Мария Мансурова продолжила выступление, рассказав о клиенте из travel-тематики. Для него необходимо было предсказать чек.

2.png

Для travel-тематики характерен поиск с разных устройств. Пользователи могут начинать интересоваться поездками по пути на работу, рассматривая варианты на мобильном устройстве, а совершить покупку – дома с десктопа.

3.png 

Для новой модели были выделены следующие значимые признаки:

Признак

Значимость

Число дней с последнего визита

0,2364

Устройство (mobile, desktop)

0,1201

Возрастная группа

0,1102

Достижение цели №1

0,0655

Число дней с первого визита

0,0614

Пол

0,0502

Достижение цели №2

0,0308

Достижение цели №3

0,0282

Число покупок на сайте

0,0274

Число купленных товаров на сайте

0,0257


Представители Яндекса отметили, что не все пользователи могут быть одинаково полезны:

  4.png

Работа с данной компанией еще не завершена, но Мария отметила, что Яндекс сообщит о результатах в будущем.

Александра также рассказала об опыте коллег из Яндекс.Маркета. Так, представителям сервиса нужно было добавить блок и рекомендацию цены магазина для карточки товара.

  5.png

Основной проблемой являлся тот факт, что в Маркете представлены разные магазины – многие из них довольно новые, где-то нет отзывов, какие-то не оформлены должным образом. Это могло оттолкнуть пользователей. Поэтому решено было начать ранжировать магазины по различным характеристикам с помощью машинного обучения.

Среди характеристик были следующие:

  • Цена
  • Наличие рейтинга
  • Наличие отзывов
  • География

Это позволило наиболее полезному для пользователей магазину повысить количество заказов на 30%.

Мария также рассказала о проблемах, с которыми рискуют столкнуться все:

  • Постановка задач и описание объекта. Задачу ставит человек, а машина (пока что) не умеет придумывать вопросы.
  • Данные не идеальны (неоднородны, неполные, их мало, могут содержать шум).
  • Хороший результат – это еще не конец.
  • Не всегда дело в модели.
  • Несбалансированные классы.
  • Переобучение.
  • Модель подглядывает правильные ответы.

Читайте также: Go Analytics! 2018: прогнозирование покупки и оптимизация рекламных кампаний на его основе

(Голосов: 5, Рейтинг: 5)
Читайте нас в Telegram - digital_bar

Есть о чем рассказать? Тогда присылайте свои материалы Марине Ибушевой


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
Алгоритм продвижения сайта через Pinterest
Виктор Гаврюков
28
комментариев
1
читатель
Полный профиль
Виктор Гаврюков - В самом вверху есть ссылка на мою группу в ВК, там где автор материала. Через группу и свяжитесь со мной_)
Ссылочный апдейт Google: что изменится для SEO-специалистов в рунете
Тимур
6
комментариев
0
читателей
Полный профиль
Тимур - Понял, спасибо за информацию.
Как забрать 5 мест в выдаче из 10. Кейс-эксперимент
Виктор Гаврюков
28
комментариев
1
читатель
Полный профиль
Виктор Гаврюков - такое можно делать и с ВЧ_)
Как продвинуть сайт по коммерческим запросам в ТОП-10 с помощью ресурса Reddit
Denis Zar
2
комментария
0
читателей
Полный профиль
Denis Zar - пользовались услугами по продвижению на реддит от reddit-marketing.pro?
3 основные ошибки, которые допускают владельцы сайтов при продвижении
Виктор Гаврюков
28
комментариев
1
читатель
Полный профиль
Виктор Гаврюков - Не обращай внимания_) Если у тебя хороший ресурс, то ты будешь первоисточником, и все кто своровал, автоматически начнут на тебя ссылаться, точнее, так гугл будет считать_)
Как мы увеличили трафик из Яндекса более чем в 3 раза за неделю на сайте клиники. Кейс
Андрей
1
комментарий
0
читателей
Полный профиль
Андрей - У большинства сайтов произошел рост в Гугле в декабре и в марте Яндекса. Ваши шаманства тут не причём :)
Как доработка структуры вывела сайт в ТОП-10 Google и увеличила трафик в 2 раза. Кейс Связной Трэвел
Дмитрий
3
комментария
0
читателей
Полный профиль
Дмитрий - Вероятнее всего было обновление Google и позиции были снижены в связи с низкой скоростью загрузки страниц (так как доработке ведутся не только по SEO, но и в целом по функционалу сайта, появляются новые скрипты). В этот период в Google Search Console увеличилось количество страниц с низкой скоростью загрузки. Мы выявили несколько проблем, которые снижают скорость загрузки страниц и выдали рекомендации по их устранению. Пока данные рекомендации находятся в работе. Также был проведен анализ EAT факторов и проверка сайта на соответствие требованиям Google к YMYL сайта, выданы рекомендации по доработке данных факторов (ждем внедрения наших рекомендаций, поделимся потом результатами).
Сравнительная статистика уровня жизни SEO-специалистов в семи странах, включая Россию
Рустам
1
комментарий
0
читателей
Полный профиль
Рустам - Средняя температура по больнице, подсчет даже близко не отображает действительность, особенно учитывая разность цен и уровня зп в разных частях больших стран (США, Канада, Россия)
Как влияют отзывы на показатель отказов/выходов с сайта. Эксперимент
Виктор Гаврюков
28
комментариев
1
читатель
Полный профиль
Виктор Гаврюков - Жаль что гугл стал меньше ценить пользовательский контент. Но отзывы все еще важны, в любом слае_)
Рост ботных переходов на сайт: как интерпретировать и что делать
Денис Логанов
2
комментария
0
читателей
Полный профиль
Денис Логанов - Все крупные интернет-магазины. Пример: Ситилинк, Ozon, SberMegaMarket, WB.
ТОП КОММЕНТАТОРОВ
Комментариев
910
Комментариев
834
Комментариев
554
Комментариев
540
Комментариев
483
Комментариев
385
Комментариев
373
Комментариев
262
Комментариев
249
Комментариев
171
Комментариев
156
Комментариев
141
Комментариев
121
Комментариев
114
Комментариев
97
Комментариев
97
Комментариев
96
Комментариев
92
Комментариев
80
Комментариев
77
Комментариев
74
Комментариев
67
Комментариев
62
Комментариев
60
Комментариев
59

Отправьте отзыв!
Отправьте отзыв!