×
Россия +7 (495) 139-20-33

Go Analytics! 2018: прогнозирование покупки и оптимизация рекламных кампаний на его основе

Россия +7 (495) 139-20-33
Шрифт:
0 12321

5 апреля в Москве прошла конференция по онлайн-аналитике для бизнеса Go Analytics!. Среди спикеров были представители Google – Арсений Алиханов и Ладо Лебанидзе. Они рассказали о прогнозировании покупки и оптимизации рекламных кампаний на его основе.

Арсений Алиханов начал выступление с рассказа о том, что в 2016 году Google объявил о том, что становится AI-first компанией. То есть, все действия компании теперь направлены на развитие технологий машинного обучения (ML) и искусственного интеллекта. До этого Google был mobile-first компанией.

Смена курса означает, что почти во всех продуктах компании применяются технологии искусственного интеллекта (AI), в том числе и в рекламе. Арсений отметил, что несколько лет назад достаточно было анализировать два показателя – демографию и местоположение, и это можно было делать вручную. Теперь картина изменилась, добавилось множество новых параметров (длительность просмотра, посещенные сайты, категория приложения, сессии и т.д.) и отследить их довольно сложно, так комбинация этих метрик рождает миллионы вариантов таргетинга. И здесь на помощь приходят различные автоматические или полуавтоматические решения.

Арсений рассказал, что есть одно направление, в котором таргетинг полностью автоматизирован. Речь об Универсальных кампаниях для приложений (Universal App Campaigns). Они позволяют размещать рекламу на крупнейших ресурсах Google. Рекламодателям нужно только добавить текст, указать ставку и требуемые ресурсы, а остальное берет на себя система.

Универсальные кампании в некотором смысле представляют собой нейронную сеть, которой подаются целевые действия. Чтобы этот инструмент работал, ему необходимо как можно больше данных. Однако иногда происходит так, что данных не хватает – например, в случае с отложенной конверсией. Здесь может помочь прогноз целевого события:

2.png

Арсений отметил, что прогнозы можно (и нужно) делать самостоятельно. Схема выглядит следующим образом:

Первый шаг:

  • Исторические данные
  • Выбор прогнозной модели

Второй шаг:

  • Ежедневная выгрузка
  • Программирование модели
  • Обмен данными

Третий шаг:

  • Отправка конверсий в AdWords
  • UAC Action с оптимизацией по прогнозу

Ладо Лебанидзе продолжил выступление и рассказал о том, как готовить данные для ML-модели.

Подход Google в приведенном примере «заточен» на ситуацию, когда предсказание должно прийти как можно быстрее после установки приложения. То есть, цель – как можно быстрее по первому поведению пользователя в приложении определить, является ли он потенциальным покупателем (в идеале конверсия должна происходить до седьмого дня после установки).

Ладо рассказал, что с помощью машинного обучения нужно тренировать модель предсказывать результат по пользователю за период предсказания (90 или 180 дней после установки приложения), используя данные поведения за каждый день периода наблюдения (14 дней после установки). Затем необходимо взять данные тренировочной когорты – пользователей, которых уже наблюдали на протяжении периода предсказания (в тренировочном сете данные о пользователях должны быть в определенном формате):

3.png

Затем следует этап определения параметров (колонок для обучающего дата-сета). Для первого прогона рекомендуется использовать как можно больше данных:

4.png
5.png

Результатом будет подобный дата-сет:

6.png

Арсений отметил, что желательно, чтобы в первичном дата-сете было много колонок (в идеале – сотни).

Затем следует этап ежедневной настройки:

7.png

Ладо дал следующие советы по моделированию:

  • Собирайте как можно больше параметров для первого прогона.
  • Модель необходимо валидировать по количеству покупателей, которых успели предсказать до факта покупки.
  • Лучше начинать с простой линейной модели.
  • При использовании для оптимизации UAC оценивать модель можно по Precision и Recall.

(Голосов: 5, Рейтинг: 5)
Читайте нас в Telegram - digital_bar

Есть о чем рассказать? Тогда присылайте свои материалы Ане Макаровой


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
Что скрывает «Прогноз бюджета Яндекс.Директ»?
Михаил Мухин
15
комментариев
0
читателей
Полный профиль
Михаил Мухин - Здравствуйте! 1-2. Считает стенд. Ссылка на него дана, но могу повторить: online.p-c-l.ru/competition/task/card/id/106. Нажмите на кнопку "Начать" и заранее приготовьте прогноз бюджета Яндекс. Суть расчета: перебор комбинаций всех ставок на всех фразах, построение бюджетных когорт - бюджетов с одинаковым СРС, отбор в каждой когорте бюджета с максимальным количеством кликов и ..., да упорядочивание этих бюджетов по мере возрастания СРС, причем берем не все, а с фиксированным шагом. 3. Гугл считается через поправочные коэффициенты. Мы перевариваем океан данных и представляем их. На удивление, получается не менее, хотя и не более точно, как и прогноз Яндекс. Конечно, нужно понимать, что это очень примерные прикидки, фактически перевод неточного прогноза Яндекс в удобочитаемую форму, не больше. Самое интересное начинается, когда применяешь метод бюджетных когорт к измерению показателей фраз на реальной рекламной кампании в режиме 48х7. Первые результаты очень хорошие. Если хотите присоединиться к бесплатному тестированию, напишите Эльвире r-support@r-broker.ru. В теме укажите "хочу присоединиться к тестам Умного управления рекламой"
Ссылочное продвижение локальных сайтов: ТОП худших SEO-методов
demimurych
8
комментариев
0
читателей
Полный профиль
demimurych - о господи. это для регионального сайта? в яндексе? где у сайта по региону конкурентов меньше чем выдачи на двух страницах из которых перваш это реклама москвы? потешно ей богу. ктото чего то не понеимает.
Зачем подменять контент на сайте: разбираем инструмент и развенчиваем мифы
Дмитрий Сульман
4
комментария
0
читателей
Полный профиль
Дмитрий Сульман - Все верно, об этом я и говорю. У крупных компаний есть много данных и они имеют доступ к дорогим технологиям и решениям для персонализации контента. Топовые западные сервисы для персонализации, такие как RichRelevance или Dynamic Yield, стоят от нескольких тысяч до десятков тысяч долларов в месяц. Понятно, что малый бизнес не может себе этого позволить. Да даже если бы чисто теоретически и мог, то это вряд ли бы имело хоть какой-то смысл. Во-первых, у малого бизнеса недостаточно данных, чтобы подобные алгоритмы персонализации начали эффективно работать, а во-вторых, тот профит, который МСБ получит от персонализации, никогда не покроет таких расходов. Мы же предлагаем решение, доступное как раз для малого и среднего бизнеса. При этом наше решение комплексное: МультиЧат - это одновременно и инструмент для персонализации, и для коммуникации.
От мечты стать юристом к собственному SMM-агентству. Как найти себя в современном цифровом мире
Виктор Брухис
5
комментариев
0
читателей
Полный профиль
Виктор Брухис - Статья выглядит так, как пожелали редакторы и интервьюер) Вопросы к интервью подбирал не я)) Хотя, в целом я согласен с вашим видением. А за пожелание удачи большое спасибо!
Монетизируйте свой сайт вместе с VIZTROM
VIZTROM
3
комментария
0
читателей
Полный профиль
VIZTROM - Добрый день! Так как мы сейчас работаем в приватном режиме, Вы врятли можете объективно оценить нашу рекламную площадку. У нас будет официальный запуск 3 марта для вебмастеров. Приглашаем Вас присоединиться к нам и лично посмотреть наш функционал.
Как удвоить выручку за счет продвижения в поиске. Кейс coffee-butik.ru
Максим Боровой
3
комментария
0
читателей
Полный профиль
Максим Боровой - Последний вопрос (извиняюсь за количество) - почему на "В корзину" стоит Nofollow. Осознанно для распределение весов?
Digital-разговор: Михаил Шакин про SEO, Google и заработок в интернете
Анна Макарова
368
комментариев
0
читателей
Полный профиль
Анна Макарова - Подготовим ) Пока предлагаю почитать интервью с Денисом Нарижным из той же серии. Там стенограмма =) www.seonews.ru/interviews/digital-razgovor-denis-narizhnyy-pro-ukhod-iz-seo-i-zarabotok-na-partnerkakh/
Почему вы торгуетесь за показы, даже если платите за клики
Константин Требунских
3
комментария
0
читателей
Полный профиль
Константин Требунских - Дмитрий, спасибо за комментарий, хорошие замечания!) 1. "Какая-то подмена понятий. CPM у “Original Works” взлетает не от того, что у них РАВНАЯ цена клика, а оттого, что вы "с потолка" поставили ему CPC в 2 раза выше, чем был. Логично, что и CPM в 2 раза увеличился (см. формулу выше). Если бы вместо 5 вы всем решили поставить 2 или 1.5, то он бы наоборот уменьшился." Вы правы, что CPM уменьшился бы. В первой и второй табличке берем одинаковое количество показов (именно за них мы платим сначала) и считаем данные, в том числе CPC. Мы поставили рекламодателей в одинаковые условия и посмотрели их эффективность в разрезе цены клика при одинаковом количестве показов. А затем изменился аукцион, и, взяв получившиеся данные по кликам и CTR, мы поставили рекламодателей тоже в одинаковое положение, но уже по цене клика, ведь мы теперь за него платим. Посчитали эффективность в разрезе уже CPM. Тут если и есть подмена понятий, то она точно не моя, а рекламных систем, потому и обозначена, как "ход конем" :) 2. "Ок, смотрим таблички "как оно было" и "как оно стало". Было: система суммарно за 2 000 денег показала рекламу 4 000 раз. Стало: система суммарно за 2 000 денег показала рекламу 13 500 раз. Сомнительный профит для системы." Вы правы, именно поэтому для рекламодателей с низким CTR ставка будет выше, чем для рекламодателей с высоким CTR. Просто чтобы система окупилась. Потому что, системе выгодно продавать показы тем, у кого кликов будет больше (ведь они платят за клик). По факту реальные цены за клик в аукционе будут как в таблице 2. Но ранжирование системы проводят по таблице 5.
Кейс Hansa: как увеличить органический трафик в 1,5 раза
Алексей Порфирьев
3
комментария
0
читателей
Полный профиль
Алексей Порфирьев - Спасибо за замечание, о данной проблеме известно, но она не стоит в порядке приоритетных. Вопрос, на самом деле, дискуссионный. В тематике конкуренция не настолько велика, а в топе выдачи часто встречаются сайты с более серьёзными техническими проблемами. По этому, именно в статьях, более важно работать над релевантностью контента, отношением времени пользователя на странице к уровню доскрола, и различным пользовательским функционалом (рейтинг материала, просмотры и т. п.).
Автоматические SEO-аудиты: как напугать некорректными выводами
SEOquick
38
комментариев
0
читателей
Полный профиль
SEOquick - Парсинг сайтов – это самый лучший способ автоматизировать процесс сбора и сохранения информации. Конкурентов всегда нужно мониторить, а не сравнивать свой сайт через автоматический аудит анализатора.
ТОП КОММЕНТАТОРОВ
Комментариев
910
Комментариев
834
Комментариев
554
Комментариев
540
Комментариев
483
Комментариев
373
Комментариев
368
Комментариев
262
Комментариев
249
Комментариев
171
Комментариев
156
Комментариев
139
Комментариев
121
Комментариев
108
Комментариев
97
Комментариев
97
Комментариев
96
Комментариев
85
Комментариев
80
Комментариев
77
Комментариев
67
Комментариев
60
Комментариев
59
Комментариев
57
Комментариев
55

Отправьте отзыв!
Отправьте отзыв!