×
Россия +7 (495) 139-20-33

Google BiqQuery для веб-аналитики

Россия +7 (495) 139-20-33
Шрифт:
0 17266

Интернет-маркетинг сегодня это огромное количество данных и цифр, и стандартных инструментов может быть недостаточно для их полного и глубокого анализа. В eLama.ru мы анализируем входящий трафик, эффективность многих маркетинговых каналов (контекстная и таргетированная реклама, email, выступления на конференциях и обучающие вебинары, соцсети, блог, PR), а также активность наших клиентов. Есть задачи, для которых нам не хватает возможностей Google Analytics, Яндекс.Метрики и Excel.

В таких случаях мы используем Google BigQuery — реляционную систему управления базами данных (СУБД), часть Google Cloud Platform, куда входит еще порядка 40-ка инструментов для вычисления, хранения и анализа данных.

В этом материале мы расскажем, как используем BigQuery в своей работе и расскажем в целом, какие возможности открывает инструмент.

Итак, рассмотрим одну типичную для нас задачу: определить эффективность обучающего вебинара. Для этого примера возьмем вебинар о ремаркетинге в Google AdWords, проведенный 28 марта. Нам нужно выяснить, сколько участников зарегистрировались в еЛаме после обучения и сколько из них подключили аккаунт AdWords.

Для этого в BigQuery мы сведем данные из трех источников:

  • информация о посетителях вебинара выгружается в CSV-файле из сервиса ClickMeeting (сторонняя платформа для проведения онлайн-конференций и вебинаров);
  • список пользователей е Ламы в CSV-файле из нашей собственной MySQL-базы;
  • информация о подключении клиентами аккаунта Google AdWords — события на фронтенде нашего сайта, которые фиксируются в Google Analytics.

Способы загрузки

Данные в BigQuery можно загружать с помощью:

  • импорта файлов (прямой или с помощью дополнительных инструментов);
  • API. Доступны клиентские библиотеки для большинства популярных языков программирования;
  • стриминга данных из Google Analytics.

Для обработки данных в BigQuery используется схожий с SQL собственный язык с очень высокой скоростью выполнения запросов.

Загрузка данных и выполнение запроса

Теперь опишем порядок действий и необходимый инструментарий для решения нашей задачи.

1) Регистрация в Google Cloud Platform. В начале работы система предоставляет $300 для работы со всеми сервисами Cloud Platform в течение 60-ти дней. По истечении двух месяцев оставшаяся сумма сгорает, а трафик BigQuery нужно будет оплачивать согласно прайсу ($5 за 1 TB). В нашем примере затраты трафика на запрос составили 24,1 MB, что относительно совсем немного.

Интерфейс BigQuery, как и всего Cloud Platform, не доступен на русском языке, а рабочая среда выглядит так:

Рис. 1 Подготовка к загрузке данных создание базы данных.png

Рис. 1 Подготовка к загрузке данных: создание базы данных

Чтобы начать работу, задаем название проекта и базы данных (dataset). Остальные поля можно не редактировать.

Рис. 2 Создание базы данных.png

Рис. 2 Создание базы данных

2) Дальше загружаем в BigQuery список пользователей, посетивших вебинар. Создадим таблицу в Google Sheets и импортируем ее в BigQuery с помощью бесплатного плагина для браузера OWOX BI BigQuery Reports.

Рис. 3 Загрузка таблицы с данными пользователей, зарегистрированных на вебинар.png

Рис. 3 Загрузка таблицы с данными пользователей, зарегистрированных на вебинар

Таблица в нашем случае содержит данные о вебинаре, источнике перехода, информацию о пользователях, дату регистрации на вебинар и дату его проведения.

При импорте нужно указать имена нужного проекта и базы данных, название импортируемой таблицы и схему данных. Каждая колонка в нашей таблице соответствует определенному типу данных, который нужно указать. Их не так много, как в традиционных СУБД, и они интуитивно понятны. Названия колонок автоматически подставляются из первой строки таблицы Google Sheets.

Рис. 4 Загрузка данных через OWOX BI BigQuery Reports.png

Рис. 4 Загрузка данных через OWOX BI BigQuery Reports

3) Загружаем в BigQuery список пользователей еЛамы. Эти данные передаются в CSV-файле напрямую в BigQuery, так как Google Sheets не справляются с таким большим объемом данных:

Рис. 5 Загрузка данных о пользователях еЛамы в CSV-файле в интерфейсе BigQuery.png

Рис. 5 Загрузка данных о пользователях еЛамы в CSV-файле в интерфейсе BigQuery

Мы указываем имя и формат файла, название таблицы, куда будет загружаться информация. В схему данных заносим названия колонок и задаем некоторые настройки импорта: разделитель между колонками в импортируемом файле, количество первых строк, которые можно пропустить.

4) Настройка стриминга из Google Analytics. Для полного анализа нам нужно, чтобы в BigQuery хранились данные о хитах: просмотрах страниц и всех действиях пользователей, которые фиксирует Google Analytics. В данном примере нас интересуют события категории “BidderAdWords” (этой категорией мы обозначаем события, связанные с нашими инструментами для работы с AdWords) и “Указал логин”, сигнализирующие о подключении пользователем аккаунта AdWords.

Cуществует инструмент, импортирующий данные из Google Analytics 360 (ранее Analytics Premium). Мы же используем OWOX BI Streaming. Для его настройки нужно установить на сайте дополнительные теги, и данные будут автоматически отправляться с фронтенда сайта на сервера BigQuery параллельно с отправкой данных на сервера Google Analytics.

5) Чтобы получить ответ на наш вопрос о регистрациях в еЛаме и подключении AdWords участниками вебинара, нужно выполнить такой запрос:

Рис. 6 Запрос.png

Рис. 6 Запрос

Так выглядит отправка запроса и результат в интерфейсе BigQuery:

Рис. 7 Построенный по нашему запросу отчет.png

Рис. 7 Построенный по нашему запросу отчет

В таблице представлены 32 пользователя, которые зарегистрировались в еЛаме после вебинара. Один из них спустя три часа после регистрации подключил себе аккаунт AdWords. Эту таблицу можно дополнить финансовыми показателями, например, пополнениями баланса еЛамы новыми клиентами. Для этого нужно загрузить в BigQuery таблицу с транзакциями и дополнить запрос еще одним JOIN.

Другие возможности BigQuery

BigQuery позволяет строить разнообразные отчеты любой сложности. Например, мы можем выяснить, на какую сумму клиенты еЛамы пополняли счет до посещения вебинара и сколько эти же клиенты заплатили после посещения вебинара за аналогичный период времени.

Можно составить список заинтересованных пользователей, например, тех, кто совершали какие-то действия на сайте, но так и не пополнили счет. И затем передать такой список в отдел продаж для звонков.

Еще одна возможность — создание списков ремаркетинга по определенным условиям. Например, мы можем выделить тех, кто подключил аккаунт AdWords, но так и не пополнил баланс. Написав и выполнив соответствующие запросы, мы получим список user_id, по которому можем создать аудиторию и использовать ее в рекламе.

Рис. 8  Создание аудитории ремаркетинга.png

Рис. 8 Создание аудитории ремаркетинга

user_id (здесь ID) — это пользовательский параметр в Google Analytics, который передается с каждым хитом.

В отличие от стандартного Google Analytics, BigQuery работает с полным объемом данных. Даже для небольших проектов Analytics сэмплирует данные, составляя обычные отчеты с периодом больше месяца. Думаю, многие видели такие предупреждения:

Рис. 9 Предупреждение в GA о сэмлировании данных.png

Рис. 9 Предупреждение в GA о сэмлировании данных

Под выборкой понимается выделение подмножества данных из трафика сайта для построения отчета. Такая методика часто используется в статистическом анализе: ее результаты близки к результатам анализа всех доступных сведений, но получаются с существенно меньшими затратами вычислительных ресурсов. Выборка ускоряет обработку данных, когда их объем настолько велик, что замедляет формирование отчета — этот процесс называется сэмплированием.

Для достоверных анализов, где используются конкретные user_id пользователей, сэмплирование неприемлемо. Стриминг всех данных из Google Analytics в BigQuery позволяет обойти это ограничение.

Также в BigQuery можно подключить инструменты визуализации данных, например, Tableau, QlikView и др. Они представляют информацию и изменения наглядно и обладают широким функционалом построения графических отчетов.

Мы хотели сравнить скорость обработки запросов в BigQuery и в MySQL на обычном хостинге. Но эксперимент потерпел неудачу. Мы сделали несколько попыток загрузить CSV-файл в MySQL, и каждый раз импорт прерывался из-за погрешностей, например, лишних кавычек в полях с данными. BigQuery корректно обрабатывает подобные ошибки. Кроме того, на мой взгляд, система MySQL сложнее в освоении, чем BigQuery, в ее использовании больше технических нюансов, и для нее нет готовых решений по стримингу данных из Google Analytics.

Заключение

Google BigQuery — универсальный инструмент для аналитики. Он несложный и интуитивно понятный в использовании. Поэтому, если вы подозреваете, что для необходимого анализа вам мало возможностей Analytics и Метрики, начинайте разбираться с BigQuery.

(Голосов: 5, Рейтинг: 5)
Читайте нас в Telegram - digital_bar

Есть о чем рассказать? Тогда присылайте свои материалы Ане Макаровой


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
Как выбрать CMS для интернет-магазина
Колян Гусляков
2
комментария
0
читателей
Полный профиль
Колян Гусляков - Если же у вас не получилось решить данную проблему, предлагаю воспользоваться авторской сборкой от neoseo. neoseo.ru/internet-magazin-seo-magazin-model. Они предоставляют дополнительные модули для работы и взаимодействия с вашим сайтом, современный дизайн, качественную оптимизацию и продвижение. Советую попробовать, не пожалеете.
«Юзабилити-лаборатория»: оставляйте заявку на участие!
Анна Макарова
381
комментарий
0
читателей
Полный профиль
Анна Макарова - Антон, добрый день! Ваш сайт не попал в основную выборку для юзабилити-анализа, но эксперты постараются сделать по вашему сайту видеоразбор (ю-ревью). Будем держать вас в курсе )
Тест по SEO – проверь свой уровень знаний
Артем Дорофеев
8
комментариев
0
читателей
Полный профиль
Артем Дорофеев - Полный текст вопроса со скриншотом панели прикладываю. Итого, что имеем: - на скриншоте отмечено, что это фильтр МПК - сайт коммерческий - рекламы на сайте нет С вероятностью 95% это ошибка (которая уже дважды случалась в Яндексе), когда они случайно "закосили" неповинные сайты. Тогда по запросу Платону фильтр быстренько снимали. Но вопрос даже не на знание этого нюанса. В любой непонятной ситуации, прежде чем что-либо предпринимать (особенно переписывать весь контент на сайте или менять дизайн, как указано в других вариантах) - фильтр следует подтвердить. Правильный ответ: "Написать письмо в техподдержку Яндекса".
Выбираем CMS для сайта с точки зрения SEO: базовые требования
SEO.RU
6
комментариев
0
читателей
Полный профиль
SEO.RU - Спасибо за замечание, действительно была допущена неточность - возможно информация была не так давно обновилась. Данные в статье поправим на актуальные.
Кейс: как за 30 дней вывести новый сайт в ТОП выдачи Google
Дмитрий
1
комментарий
0
читателей
Полный профиль
Дмитрий - Нейромаркетинговые исследования также могут положительно повлиять на продвижение сайта, я лично убедился обратившись к компании Neorotrack, и результат был отличным
7 способов увеличить авторитетность сайта «в глазах» поисковых систем
Grigo5
4
комментария
0
читателей
Полный профиль
Grigo5 - Понятно.
Digital-marketing: как выжить в кризис. Опыт реальной компании
Maks
1
комментарий
0
читателей
Полный профиль
Maks - Спасибо за опыт Вашей компании, Иван Папусь. Интересно получилось! Желаю Вашему бизнесу стабильности и успешно пережить все кризисы))
100+ ресурсов по SEO для изучения поисковой оптимизации с нуля
Марина Ибушева
0
комментариев
0
читателей
Полный профиль
Марина Ибушева - Спасибо за добавление. Мы уже работаем над отдельным материалом про курсы, потому что одной статьи мало, чтобы охватить все крутое по обучению)
SEO must go on! Почему в кризис нельзя останавливать продвижение сайта
everystraus
0
комментариев
0
читателей
Полный профиль
everystraus - Мы даже варианты не рассматривали. Если проект неустойчив, сразу предлагали сбавить обороты до минимума, но и так, чтоб не свалиться в штопор. Именно по СЕО чаще всего.
Как стандартизировать данные семантики с помощью логарифмов
Юлий
1
комментарий
0
читателей
Полный профиль
Юлий - Чем снималась коммерцелизация?
ТОП КОММЕНТАТОРОВ
Комментариев
910
Комментариев
834
Комментариев
554
Комментариев
540
Комментариев
483
Комментариев
381
Комментариев
373
Комментариев
262
Комментариев
249
Комментариев
171
Комментариев
156
Комментариев
141
Комментариев
121
Комментариев
113
Комментариев
97
Комментариев
97
Комментариев
96
Комментариев
89
Комментариев
80
Комментариев
77
Комментариев
67
Комментариев
60
Комментариев
60
Комментариев
59
Комментариев
57

Отправьте отзыв!
Отправьте отзыв!