Как настроить рекламную кампанию в Яндекс.Директе на look-alike аудиторию

Россия+7 (495) 960-65-87
Шрифт:
1 21380

Алгоритмы Яндекс непрерывно анализируют поведение пользователей в интернете. На основе машинного обучения, популярность которого с каждым годом растет, а также учитывая огромное количество параметров (посещаемые сайты, история запросов, регулярность использования, особые предпочтения и т.д.), системы находят у данных пользователей некие общие признаки. По ним они формируют определенные группы по интересам, которые по поведению в интернете похожи на ваших потенциальных клиентов.

В дальнейшем на эту группу пользователей можно создать таргетинг в рекламных системах Яндекса. Сам вид таргетинга называется look-a-like (с англ. «поиск похожих»), похожие аудитории или similar audiences, similar users (в AdWords).

В 2013 году Яндекс запустил новый вид таргетинга – Look-alike. На основе технологии Крипта система анализирует данные о покупателях, полученные из Яндекс.Метрики, и позволяет показывать медийные баннеры пользователям, которые по поведению в интернете похожи на ваших потенциальных клиентов, обладают теми же характеристиками и совершают те же самые действия – оформляют заказ, задают вопрос по обратной форме, кликают по кнопке и т.д.

Такие аудитории создаются через специальный инструмент Яндекс.Аудитории и применимы для кампаний РСЯ в Яндекс.Директе (за исключением «Провайдеры данных DMP») и Яндекс.Дисплей.

Сегодня поговорим о том, как настроить рекламную кампанию в Яндекс.Директе на look-alike аудиторию. В конце статьи я поделюсь реальным примером 3-х недельного теста двух РСЯ-кампаний: традиционной и look-alike, созданной на основании готового списка из действующих конверсионных пользователей.

Создание сегмента

Для создания похожей аудитории нам необходимо сначала создать сам сегмент аудитории. Существует несколько видов данных:

Создание сегмента.jpg

На основе загружаемых данных:

  • Телефонные номера
  • Email-адреса
  • ID мобильных устройств

На основе данных Яндекса:

  • Яндекс.Метрика
  • AppMetrica
  • Геолокация
  • Пиксель Я.Аудиторий

Произвольный сегмент:

  • Похожий сегмент

На основе загружаемых данных

Для всех трех типов данных одинаковые требования к файлу загрузки, но разные к типу записи:

1. Расширение файла: .csv или .txt

2. Максимальный размер: 1 гб

3. Кодировка: utf-8 или windows-1251

4. Разделитель записей: запятая, перенос строки или табуляция

5. Минимальное количество записей в файле: 1000 (если будет меньше, сегмент не обработается и не будет создан)

Подробнее о требованиях в официальной справке Яндекса.

Создаем новый сегмент. Вводим название сегмента аудитории, выбираем тип данных, добавляем файл, принимаем условия пользовательского соглашения и нажимаем «Создать сегмент».

На основе загружаемых данных 1.jpg

После этого данные будут обрабатываться в течение 30–60 мин. В этот момент Яндекс сопоставляет данные из вашего файла с данными, которые у него накопились по так называемым «анонимным идентификаторам» (deviceid или cookie).

На основе загружаемых данных 2.jpg

Итоговым результатом обработки сегмента станет измененный статус «Обрабатывается» на «Готов», а также общие сведения по нашему списку.

На основе загружаемых данных 3.jpg

Основные данные по полу и возрасту, городам и устройствам, а также интересам и категориям:

На основе загружаемых данных 4.jpg

Чем однороднее сегмент, тем более эффективно на нем может работать look-alike. В данном конкретном примере аудитория однородна (степень схожести: высокая).

На основе загружаемых данных 5.jpg

На основе загружаемых данных 6.jpg


Данные в «Интересы» и «Категории» показывают, к каким темам пользователи нашего сегмента проявляют бОльший интерес, и насколько чаще представители определенного образа жизни встречаются в вашем сегменте, чем в сети в целом.

Также вы можете добавить конкретную цель из Яндекс.Метрики и узнать, какой процент пользователей в сегменте, которые были на сайте или достигли заданной цели за последние 90 дней. Это поможет понять, насколько сегмент удачен для таргетинга.

На основе загружаемых данных 7.jpg

Примечание: после добавления цели данные по ней будут доступны только через несколько часов.

На основании созданного списка email-адресов покупателей мы можем создать похожую (look-a-like) аудиторию, которая, по мнению Яндекса, вероятнее всего, захочет также стать нашими клиентами. Делается это с помощью «Сегмента похожих аудиторий».

На основе загружаемых данных 8.jpg

Если же у вас большое количество созданных сегментов, то нажимаем «Создать сегмент» – «Похожий сегмент».

В открывшемся окне мы можем выбрать новый сегмент на основании точности или охвата. Чем выше точность, тем меньше охват. И наоборот. Время обработки такого сегмента занимает от 1 часа.

На основе загружаемых данных 9.jpg

В начале 2017 года в Яндексе стали доступны две новые настройки:

1. По географии (распределение по городам);

2. По типам устройств (распределение по типам устройств).

Распределение по городам

Если вы работаете в определенном регионе или городе (например, в Москве) и хотите настроить look-alike на собранную базу ваших клиентов, то при сохранении галочки в настройке вы получите новых похожих клиентов только из Москвы.

Распределение по типам устройств

Например, если в вашем исходном сегменте большее число пользователей делают заказы с ПК (2/3), а 1/3 – с мобильных и планшетов, то в «похожем» сегменте система сохранит такое же соотношение.

Примечание: по умолчанию обе настройки активированы и технология создает достаточно узкие сегменты.

На основе данных Яндекса

Если же у вас нет базы email-адресов, телефонных номеров или ID мобильных устройств с 1000 записей, вы можете создать сегмент на основе данных из Яндекс.Метрики. Для этого необходимо выбрать счетчик, тип аудитории (все посетители сайта, сегмент из аналитики или достигшие определенной цели)

На основе данных Яндекса 1.jpg

Для мобильных устройств – через инструмент аналитики AppMetrica. Создать начальный сегмент можно также с помощью геолокации и пикселя.

Настройка рекламной кампании в Яндекс.Директе на похожую аудиторию

Принцип настройки такой же, что и в ретаргетинговых кампаниях. Правда перед настройкой РК нужно удостовериться, что сегмент аудитории создан на том же самом аккаунте, что и Яндекс.Директ. Если же они различны, следует предоставить доступ нужному сегменту:

Настройка рекламной кампании в Яндекс.Директе на похожую аудиторию 1.jpg

Настройка рекламной кампании в Яндекс.Директе на похожую аудиторию 2.jpg

После этого сегменты аудиторий станут доступны в аккаунте Яндекс.Директа.

В самой рекламной кампании необходимо зайти в настройки группы объявлений и выбрать «Условия подбора аудитории».

Настройка рекламной кампании в Яндекс.Директе на похожую аудиторию 3.jpg

Добавляем новое условие на нашу look-alike аудиторию:

Настройка рекламной кампании в Яндекс.Директе на похожую аудиторию 4.jpg

Сохраняем новые настройки и запускаем нашу рекламную кампанию!

Таким образом, мы с вами научились создавать look-alike (похожие) аудитории через начальные сегменты аудитории и настраивать на них РСЯ в Яндекс.Директе. Технология не является новой и давно используется в Facebook и прямым конкурентом Яндекса – в Google AdWords, о настройке которого мы поговорим в следующей статье.

Реальный кейс по look-alike аудитории

Исходные данные

  • Сайт по сбору заявок на трудоустройство водителей такси (Яндекс.Такси, Gett, Uber и т.д.).
  • Рекламные кампании:

1. РСЯ Москва

2. РСЯ Look-alike Москва

  • Начальная ставка для двух кампаний – 20 руб.

Благодаря списку телефонных номеров пользователей, которые оставляли заявку на трудоустройство, удалось создать сегмент похожей аудитории с высокой степенью соответствия и добиться следующих показателей по сравнению с традиционной РСЯ-кампанией за 3 недели теста (с 20 июня по 11 июля 2017 года).

Результаты

Реальный кейс по look-alike аудитории.jpg

Как видно из таблицы, мы получили:

  • в 2,5 раза больше показов;
  • в 2 раза больше кликов;
  • в 1,95 раза больше конверсий;
  • коэффициент конверсии look-alike аудитории после теста оказался выше на 0,1%

Правда проиграли в CTR из-за большего охвата, и цена 1 заявки увеличилась (250 руб. vs 209 руб.). Однако при ведении рекламных кампаний удалось уложиться в заданные рамки KPI.

А у вас есть практические примеры использования похожих аудиторий в Яндекс.Директе?

(Нет голосов)
Читайте нас в Telegram - digital_bar

Есть о чем рассказать? Тогда присылайте свои материалы Даше Калинской


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
  • мария
    1
    комментарий
    0
    читателей
    мария
    5 месяцев назад
    спасибо за статью! долго искала нужную информацию!
    -
    0
    +
    Ответить
ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
Рейтинг Известности 2018: старт народного голосования
Михаил Р
1
комментарий
0
читателей
Полный профиль
Михаил Р - 1. Demis 2. кокс 3. Ашманов 4. Скобеев 5. Digital Strategy
Тест: Кто как пробежал, или Итоги клиентского рейтинга SEOnews 2018
Анна Макарова
338
комментариев
0
читателей
Полный профиль
Анна Макарова - Друзья, спасибо всем за участие! Мы определили победителей. Кто ими стал - вы найдете по ссылке: www.seonews.ru/events/darim-knigi-ot-mif-pobediteli-opredeleny/ Если вы стали одним из победителей, обязательно свяжитесь с нами по указанной в новости (по ссылке выше) почте. Всем хороших выходных! =)
SEO глазами клиентов 2018
Артур Якушев
1
комментарий
0
читателей
Полный профиль
Артур Якушев - >сейчас же сложно найти агентства, которые специализируются только на SEO Не так и сложно найти нас www.msk.lapkinlab.ru
Рейтинг Известности 2018: второй этап народного голосования
Константин Сокол
3
комментария
0
читателей
Полный профиль
Константин Сокол - Кто был ответственный за дизайн таблицы голосования? Копирайтер?
Комплексный аудит интернет-магазина от «Ашманов и партнеры». Часть 1
Александр Сова
1
комментарий
0
читателей
Полный профиль
Александр Сова - А вот и сеошники подъехали, покидать на вентилятор :D
Кейс: вывод лендинга по изготовлению флагов на заказ в ТОП 1 по Санкт-Петербургу
utka21
4
комментария
0
читателей
Полный профиль
utka21 - Кейс как кейс. Для некоторых станет вполне возможно полезным. ( Для конкурентов точно) . А вот с комментариями , что то пошло не так )
Не очень удачный кейс продвижения сайта по услуге «Трезвый водитель» в Москве
Кирилл Щербаков
3
комментария
0
читателей
Полный профиль
Кирилл Щербаков - "даже пришлось подключить отслеживание звонков с сайта" "Даже" - как будто это что-то нереальное
Как использовать Python для LSI-копирайтинга
Evgeny Montana
6
комментариев
0
читателей
Полный профиль
Evgeny Montana - спасибо)
Стартовал сбор заявок на участие в рейтинге «Известность бренда SEO-компаний 2018»
Артем Первухин
1
комментарий
0
читателей
Полный профиль
Артем Первухин - Make KINETICA Great Again!
Эксперимент: как уникальность контента влияет на продвижение сайта
Ilia Nazmutdinov
2
комментария
0
читателей
Полный профиль
Ilia Nazmutdinov - Кстати, ПФ не работают на нулевом трафике. Пока на сайт не льются тысячи показов по одним и тем же запросам влияние оказывает ток ссылочное\внешнее и внутреннее\ и внутренняя оптимизация.
ТОП КОММЕНТАТОРОВ
Комментариев
910
Комментариев
834
Комментариев
554
Комментариев
540
Комментариев
483
Комментариев
373
Комментариев
338
Комментариев
262
Комментариев
241
Комментариев
171
Комментариев
156
Комментариев
137
Комментариев
121
Комментариев
97
Комментариев
97
Комментариев
97
Комментариев
96
Комментариев
80
Комментариев
67
Комментариев
61
Комментариев
60
Комментариев
59
Комментариев
57
Комментариев
55
Комментариев
54

Отправьте отзыв!
Отправьте отзыв!