×
Россия +7 (495) 139-20-33

Как поисковик может определить релевантность по связанным запросам

Россия +7 (495) 139-20-33
Шрифт:
0 5974

Знаете ли вы, что поисковики могут пытаться убедиться в релевантности собственной выдачи? Как именно они это делают можно узнать из недавно одобренного патента Yahoo.

Прежде, чем перейти к описанию автоматической проверки релевантности и вариативности (распределения результатов по значениям в случае многозначного запроса), в патенте описываются недостатки ручной проверки и определения релевантности на основе данных о переходах.

Ручная проверка релевантности

Одним из вариантов проверки релевантности результатов поиска является проверка человеком результатов по каждому запросу. Это занимает довольно много времени, существует вероятность человеческой ошибки, а покрыть проверкой все запросы, встречающиеся в сети просто невозможно.

Даже сейчас можно найти объявления о вакансиях «Internet Judges». В частности, такие объявления размещала компания LionbridgeTechnologies, с которой ранее сотрудничали Google. Да, поисковые машины используют ручную проверку и систему «интернет судей». Людьми являются и футбольные судьи. Они никогда не ошибаются, правда?

Отслеживание переходов

В одном из патентов Yahoo описывается система ранжирования изображений, основанная на кликах по ним пользователей. Предполагается, что по релевантным запросу изображениям пользователь кликнет и перейдет на интересующую его страницу. Следовательно, в выдаче по запросу картинки, по которым чаще кликали, поднимались, а те, которые «незаслуженно» занимали высокие места, постепенно опускались вниз.

Что ж, с картинками, где существует предварительный просмотр, эта система вполне может работать эффективно. А что насчет текстовых страниц? Проблема в том, что люди видят в выдаче лишь заголовок страницы, краткую аннотацию и адрес страницы. Эти данные не обязательно адекватно представляют содержание страницы. Следовательно, даже переход по ссылке не гарантирует релевантность страницы в выдаче.

Алгоритм для определения релевантности и вариативности поисковых результатов

Процесс, запатентованный Yahoo, использует информацию недавних поисков для определения сочетаемости результатов поиска с текущим запросом.

Автоматическая проверка релевантности и вариативности для веб и вертикальных поисковых машин

Изобретено Jignashu G. Parikh

Принадлежит Yahoo

US Patent 7,558,787

Одобрено 7 июля, 2009

Подано на рассмотрение 5 июля, 2006

Аннотация

Представлена техника автоматической проверки релевантности и вариативности поисковых результатов.

Поисковой машине направляется запрос, на основании которого при помощи поискового алгоритма машина выдает поисковые результаты. Определяется набор топовых и связанных терминов для запроса. Для каждого связанного термина определяется его частота относительно остальных терминов в наборе. Если термин не встречается ни в одном из результатов, то случилась потеря в вариативности пропорциональная относительной частоте связанного термина.

Иначе, релевантность поисковых результатов вычисляется сравнением пропорции результатов, содержащих термин, с относительной частотой термина. Этот процесс повторяется для всех терминов в наборе или связанных терминов для того, чтобы получить полную картину релевантности и вариативности результатов.

После того, как пользователь нажимает кнопку поиска, поисковая машина выдает набор результатов, ранжированных согласно поисковому алгоритму. Алгоритм, используемый для ранжирования этих результатов, обычно включает в себя элементы измеряющие релевантность и важность страниц соответствующих искомому запросу.

Этот патент описывает интерфейс тестирования, который поисковые алгоритмы и разработчики поисковых машин смогут использовать для проверки вариативности и релевантности поисковых результатов.

Использование связанных терминов

Этот процесс определения релевантности и вариативности поисковых результатов начинается с определения терминов, которые могут быть связаны с искомым запросом.

Кто-то ищет «Amazon», поисковая машина получает результаты, связанные с запросом, и отображает их пользователю.

Появившиеся результаты могут относиться к магазину «Amazon.com» или к реке Амазонке. Автоматически точно определить требуется ли пользователю информация о первом, втором или чем-то третьем невозможно. Но поисковая машина может обратиться к логам запросов и сессий и другим наборам данных для определения различных значений запроса.

Именно эти суб-концепции вы можете увидеть в поисковом предположении поисковой машины. О том, как они формируются, мы уже писали ранее.

Также поисковые машины отслеживают время поиска запросов, что может быть полезным при поиске информации, зависящей от времени.

Так что если на Амазонке два месяца назад случилось землетрясение, то логи запросов того времени могут содержать много запросов «Amazon earthquake». Через месяц количество поисков по этому запросу будет гораздо меньше и «amazon earthquake» может уже не считаться связанным запросом, каковым он, несомненно, считался сразу после описанных событий.

Поиск в логах недавних запросов покажет, как много раз вводились запросы, влючавшие в себя или вводившиеся вместе с «Amazon». Так что если запросы «amazon books», «amazon river» и «amazon rainforest» часто встречались в исследуемых логах, то они будут отображены как связанные. Также поисковые машины могут проверять в логах, какие запросы вводились за одну сессию с запросом «Amazon».

Относительная частота терминов и проверка релевантности

Как только поисковая машина определила набор связанных терминов для запроса, она может вычислить относительную частоту каждого из этих терминов относительно оригинального запроса в логах поиска. Вот пример того, как может проходить такой подсчет. Выдержка из патента:

Например, обращаясь к таблице 216, F.sub.term термина «books» равняется 25. Это означает, что «books» встречается вместе с «Amazon» 25 раз в выбранной части лога запросов 210, показанного в таблице 212. Далее, F.sub.total равно 50, соответствуя общему числу совместных появлений для всех терминов в наборе таблицы 216.

Следовательно, можно сделать вывод, что F.sub.relative для термина «books» является 25/50 или 50%. Далее в таблице 216 содержатся относительные частоты всех терминов в наборе связанных терминов. Конкретнее, частота «rainforest» равна 12/50 или 24%, «river» 8/50 или 16%, и «fish» 5/50 или 10%.

Относительная частота терминов для каждого связанного термина в наборе также используется для определения вариативности. Эти соотношения могут быть использованы для оценки результатов поиска.

Если вы смотрите на топ-10 страницы выдачи (или контент найденных страниц) по запросу «amazon», то содержит ли половина результатов слово «books»? Содержит ли четверть из них слово «rainforest»? Упоминается ли слово «river» в двух из них? И есть ли хоть одно с упоминанием слова «fish»?

Если соотношения между логами запросов и результатами поиска почти совпадают, то это может служить признаком высокой релевантности выдачи. Также это свидетельствует о правильной вариативности.

В патенте также содержится предупреждение о том, что некоторые результаты поиска могут быть в высшей степени релевантны, но при этом страдать от недостатка вариативности в случае, если запрос не содержит множества значений, и связанные термины не относятся к различным темам.


Переводной материал, источник


(Голосов: 5, Рейтинг: 5)
Читайте нас в Telegram - digital_bar

Есть о чем рассказать? Тогда присылайте свои материалы Ане Макаровой


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
Кейс: как за 30 дней вывести новый сайт в ТОП выдачи Google
Сергей
2
комментария
0
читателей
Полный профиль
Сергей - Прошёл у Паши курс год назад, пытался продвигать свой сайт portativ.org.ua, но особых продвижений нет. Наверное сео уже умерло??
Облако тегов в интернет-магазине: прикладная инструкция по увеличению трафика
Юлия Дмитриева
2
комментария
0
читателей
Полный профиль
Юлия Дмитриева - Согласна с вами, что в любом деле важен индивидуальный подход:)
Специалисты в Рунете заметили глобальную накрутку поведенческих факторов
Дмитрий Кулаевский
1
комментарий
0
читателей
Полный профиль
Дмитрий Кулаевский - кто-нибудь знает как с этим бороться? очень много такого трафа идёт с июля, сайт сильно просел
Как стандартизировать данные семантики с помощью логарифмов
Юлий
1
комментарий
0
читателей
Полный профиль
Юлий - Чем снималась коммерцелизация?
Яндекс возобновил «показательные порки» за накрутку поведенческих факторов
Антон
1
комментарий
0
читателей
Полный профиль
Антон - Никакой не выпал. Кроме клиентского сайта, который проседал из-за скрутки, о чем Я.Поиску сообщали и клиенту тоже. Ноль реакции от поисковика (продолжайте развивать сайт, никаких проблем нет ...). Клиенту надоело и он заказал накрутку у подрядчиков. Мы искренне ждали бана, сообщали об этом клиенту, т.к. мы все таки делаем все остальное для развития. Как итог: с лета полет нормальный. Сайт растет, никаких проблем. Случайно даже стажер палил тех поддержке факт использования накрутки. И ничего. Сайт растет дальше. Если они не могут ничего принять даже после признания факта накрутки, что они могут сделать с жалобами на накрутку конкурентов?! Никогда не одобряли данные методы, но ... похоже ... все работает :)
От количества к качеству: что происходит с рекламой в Рунете
Евгений
1
комментарий
0
читателей
Полный профиль
Евгений - Истину глаголите!
Михаил Ляшенко (PostMarket): о рынке инфлюенс-маркетинга и рекламе у блогеров
Григорий Романченко
1
комментарий
0
читателей
Полный профиль
Григорий Романченко - Неудивительно, что все хвалят PostMarket, это действительно достойный сервис, недавно стали через них продвигать свой продукт, результаты есть, продажи выросли на 40% и это только начало.
«Нет в наличии»: что делать с карточками отсутствующего товара
freyr energy
1
комментарий
0
читателей
Полный профиль
freyr energy - Thank you so much @ admin for share your valuable thoughts and ideas We always enjoy your articles its inspired a lot by reading your articles day by day. So please accept my thanks and congrats for success of your latest series. We hope, you should published more better articles like ever before solar rooftop
15 языков программирования, за знание которых платят выше среднего
Любомир
2
комментария
0
читателей
Полный профиль
Любомир - Ну и ЗП: ни слова о том что она варируеться от 0 до 100 000$ в год!!! Что до высокой зп надо несколько лет етим заниматся! Что 100 000$ в год на западе заробатывают, а где нибудь в азиатских страннах 100$ в год. В СНГ первые годы в разработчика ЗП как в грузчика на складе - это где то 4-5 тыс. долларов в год, и уже имея несколько лет опыта возможно дойти до 10-20 тыс. долларов в год! Почему нет конкретики? Меня лично нервирует то что людям внушают великие ЗП в АйТи, а люди тупые и ведутся!!!!
Яндекс тестирует оценки сайта в сниппете
Сергей Демин
8
комментариев
0
читателей
Полный профиль
Сергей Демин - вопрос такой: где получить оценку о сайте? а не об организации
ТОП КОММЕНТАТОРОВ
Комментариев
910
Комментариев
834
Комментариев
554
Комментариев
540
Комментариев
483
Комментариев
384
Комментариев
373
Комментариев
262
Комментариев
249
Комментариев
171
Комментариев
156
Комментариев
141
Комментариев
121
Комментариев
113
Комментариев
97
Комментариев
97
Комментариев
96
Комментариев
92
Комментариев
80
Комментариев
77
Комментариев
67
Комментариев
60
Комментариев
60
Комментариев
59
Комментариев
57

Отправьте отзыв!
Отправьте отзыв!