×
Россия +7 (495) 960-65-87

Как получать больше лидов из контекстной рекламы с помощью когортного анализа

Россия +7 (495) 960-65-87
SEOnews
Как получать больше лидов из контекстной рекламы с помощью когортного анализа
Шрифт:
0 19717

Когортный анализ — мощное средство для оценки трендов, лояльности клиентов и их пути к покупке. Меган Таггарт объяснила, как внедрить этот инструмент в ваши отчеты по контекстной рекламе. А команда i-Media перевела ее руководство для SEOnews.

Клиенты, коллеги и прочие заинтересованные лица часто задают b2b-маркетологам, подготовившим отчет по контекстной рекламе, одни и те же вопросы:

Почему я вижу приток кликов и переходов по объявлениям, но не вижу потенциальных или закрытых сделок?

В этом месяце мы вложили в контекст дополнительные $15 000, ну и где результаты?

Каков вклад контекстной рекламы в удержание клиентов?

Это важные вопросы об эффективности контекстных кампаний, поскольку именно они первыми приходят на ум всем заинтересованным сторонам. Чтобы точно на них отвечать, требуются и серьезные навыки в разработке отчетов, и отличное понимание модели атрибуции, выбранной вашей организацией.

Многие специалисты по контекстной рекламе компетентны только в одной из этих областей, а потому их отчеты часто отражают лишь половину общей картины. Из-за недочетов в измерениях, анализе, оптимизации и том, как расходуются маркетинговые бюджеты, клиенты остаются разочарованы результатами. Тем не менее в арсенале специалистов по контексту есть и другие инструменты, помогающие отвечать на вопросы, так волнующие клиентов.

Когортный анализ, применяющийся в отчетности по контекстной рекламе, может быть мощным средством оценки трендов, лояльности потребителей и их пути к покупке. Кроме того, он обеспечивает более высокую точность при анализе результатов за целевой период, соответствующий времени прохождения воронки продаж.

Мы рассмотрим основы когортного анализа и разберемся, как запустить этот инструмент в ваших кампаниях, основанных на воронке привлечения клиентов:

Lead > Prospect > Opportunity > Customer

Лид > Потенциальный клиент > Потенциальная сделка > Покупатель

Что такое «когорта»?

Термином «когорта» в маркетинге обозначают сегменты пользователей, собранные по определенному признаку в рамках строгого интервала времени. Когорты могут состоять из покупателей, подписчиков почтовой рассылки, пользователей, скачавших демоверсию, подключивших пробный период или выполнивших любое другое конверсионное действие в воронке.

Какой бы ни была сегментация, ценность у этих групп появляется тогда, когда вы долгое время наблюдаете за ними и анализируете их поведение на протяжении всего цикла продаж. Без когорт маркетологам остается только гадать о «возрасте» покупателей в воронке (то есть о том, как долго последние в ней находятся). В этом случае маркетологи не способны определить реальный уровень лояльности клиентов.

Анализ эффективности контекстной рекламы обычно предполагает изучение коротких временных интервалов и сравнение их с предыдущей неделей, месяцем или другим периодом. Это отличный сравнительный инструмент, но он не решает главной проблемы. Отчет за короткий отрезок времени включает данные о расходах, которые еще не успели принести вам лид (или привести пользователя на иной этап воронки).

Иными словами, мы раздуваем показатели цены за лид, поскольку учитываем расходы, которые никак не способствовали тем лидам, которые включены в отчет. Пример пути от клика до покупки показан ниже:

Что такое «когорта»?

При сравнении нескольких периодов можно выяснить средние показатели эффективности для фиксированных групп, однако такой подход не учитывает выбросов (резко выделяющихся значений — прим. переводчика). В качестве последних могут выступать группы повторных покупателей, пользователи, которые добавили товар в корзину и ушли с сайта, или же выборка людей, исчезающих по пути к конверсии. В любом случае смешение новых и старых покупателей неизбежно искажает результаты в отчете.

Если сравнивать год к году средний доход на пользователя во время Черной пятницы, то показатель может казаться отличным, поскольку растущий по экспоненте трафик подстегивает продажи. Но как насчет пользователей, покупавших у вас в прошлую Черную пятницу? Скорее всего, ценность этих клиентов заметно падает, хотя общие показатели высоки как никогда. Исключение составляют случаи, когда реализуется эффективная программа удержания клиентов.

В долгосрочной перспективе опираться исключительно на такие показатели опасно. Они включают в себя прибыль, полученную от клиентской базы за все время ее существования, вместо того чтобы учитывать продолжительность пребывания клиентов в воронке.

Организация сбора данных

Переход к когортной модели требует тщательной предварительной работы. Крайне важно убедиться в точности данных, которые вы собираете. В этом случае важнейшие колонки в таблице – дата и временные отметки, такие как «Дата создания лида» и «Дата перехода лида на следующий этап» («потенциальная сделка», «покупатель», «дата первой покупки» и так далее).

Даты позволяют замерять время, за которое пользователи проходят через воронку, и использовать полученные данные в отчетах по контекстной рекламе. Вот идеальный набор колонок для отчета «Потенциальные сделки»:

  • дата создания лида,
  • дата создания потенциальной сделки,
  • ID лида,
  • источник,
  • кампания,
  • ключевое слово.

Время в воронке продаж

Итак, мы настроили сбор данных и получили результаты за статистически значимый период ретроспективного анализа. Теперь нужно разобраться в том, сколько времени занимает прохождение воронки продаж у пользователей, перешедших по контекстной рекламе. Мы хотим понять, какое время потребуется лиду, чтобы превратиться в перспективного клиента, потенциальную сделку и, наконец, в покупателя.

Чтобы получить полные данные для настройки когортного анализа, нацеливайтесь на период от 6 до 12 месяцев. Задавать достаточно широкий диапазон дат чрезвычайно важно: в противном случае можно неправильно оценить вклад контекстной рекламы в общие результаты.

Начнем с самого начала, чтобы в конце концов вернуться к данным, которые мы хотим получить:

  • количество дней между лидом и потенциальным клиентом;
  • количество дней между лидом и потенциальной сделкой;
  • количество дней между лидом и покупателем.

Выяснить количество дней между лидом и потенциальным клиентом довольно просто. Возьмите дату создания потенциального клиента (то есть дату, когда лид превратился в потенциального клиента) и отнимите от нее дату создания лида. Повторите эту операцию со всеми лидами и убедитесь, что исключили основные выбросы.

Разбираться с лидом и потенциальной сделкой стоит в отдельном документе, чтобы не запутаться в данных. Возьмите дату, когда лид превратился в потенциальную сделку, и отнимите дату создания лида. Как и следовало ожидать, получившийся период заметно больше, нежели временной отрезок от лида до потенциального клиента.

Повторите этот процесс с покупателями.

После такого анализа вы будете прекрасно представлять, как долго лиды проходят каждый из этапов. Возможно, вас даже шокирует то, насколько долгим оказался цикл продаж в конкретном случае. Вы тут же сможете объяснить, почему отчеты по неделям не подходят для некоторых кампаний по привлечению клиентов. Причем ваши слова будут основаны на том, сколько времени на самом деле занимает прохождение воронки.

Выбор процентиля

Когортную модель можно использовать для более быстрой и точной оптимизации контекстных кампаний. Перед принятием решений не обязательно ждать, пока 100% ваших лидов пройдут воронку. Вместо этого можно выбрать подходящий процентиль (значение, которое заданная случайная величина не превышает с фиксированной вероятностью, выраженной в процентах – прим. переводчика).

Например, если мы возьмем 75-й процентиль, то сможем определить, за сколько дней воронку пройдут 75% самых быстрых лидов из контекстной рекламы. Процентиль может заметно сократить число дней между этапами, полученное в результате предыдущих расчетов, но в этом нет ничего страшного. Мы знаем, что оставшиеся лиды в какой-то момент перейдут на следующий этап. Помните, что наша цель – принимать правильные решения быстро.

При работе с сокращенным временным интервалом из модели придется исключать клиентов с немного более высокой ценой за достижение цели.

Другой пример: если целевая стоимость привлечения клиента составляет $750 и мы работаем с 75 процентилем, то нужно увеличить показатель до $1000. Если бы мы ждали, пока все покупатели преодолеют воронку, то получили бы более низкую стоимость, нежели при учете 75% самых быстрых из них.

Если идея использовать процентиль кажется вам слишком сложной, подумайте о том, что работа со средними значениями и некогортной моделью все равно не дает точных результатов. Наша задача — оптимизировать кампании на основе точных данных и настолько приближаясь к режиму реального времени, насколько это в принципе возможно.

После того как временные рамки и процентиль определены, не стоит включать в отчеты потенциальных клиентов, потенциальные сделки или покупателей, которым требуется больше времени для конверсии.

Если период перехода на этап «покупатель» составляет 30 дней, а конкретному пользователю потребовалось 45 дней, то вы искусственно завысите показатели, включив его в 75-й процентиль. Такие покупатели должны учитываться в каком-то другом месте сводной таблицы, но не внутри когортной модели принятия решений.

Разработка отчетов и представление результатов

Чтобы составить точные отчеты, нужно прежде всего убедиться, что потенциальные клиенты, потенциальные сделки и покупатели не учитываются за пределами своих временных рамок.

Как это выглядит на практике? Представим, что период перехода на этап «покупатель» равен 30 дням. В этом случае мы учитываем результаты только тех покупателей, которые старше 30 дней и у которых было время «созреть». Чтобы получить точную стоимость привлечения клиента, нам также нужно исключить расходы за последние 30 дней. Следует учитывать затраты только за период «созревания» наших покупателей или потенциальных сделок.

После этих операций вы получите самые точные отчеты о количестве пользователей, стоимости их привлечения и коэффициентах конверсии на разных этапах воронки.

Скорее всего, выяснится, что эффективность рекламы долгое время была выше, нежели показывала отчетность (поскольку в ней учитывались расходы за дни, еще не успевшие принести лидов). Создав новые отчеты, вы получите возможность принимать решения на основе самых точных данных, с которыми вам приходилось иметь дело.

Разработка отчетов и представление результатов

На иллюстрации выше анализ показал, что 75% самых быстрых лидов превращаются в покупателей в течение шести месяцев. С учетом этой информации, рассматривать показатели каналов при анализе стоимости привлечения клиента можно только в первый и второй месяц.

При анализе цены за потенциальную сделку эти показатели можно рассматривать за месяцы с первого по пятый. Наши лиды можно анализировать почти в режиме реального времени.

Применение результатов когортного анализа

Прогнозирование. Поведение новой выборки клиентов гораздо проще прогнозировать, если вы понимаете, как движение и развитие когорт из контекстной рекламы связано с объемом продаж и прибылью.

Стратегия удержания клиентов. Следует ли вам уделять больше внимания действиям после покупки? Узнать об изменениях покупательских привычек и вовлеченности клиентов поможет сравнение дневных, недельных или месячных когорт и дохода, полученного от соответствующей группы в период от 6 до 12 месяцев после покупки. Если объем продаж или количество повторных покупок не растет, возможно, стоит запустить стратегию удержания или возвращения клиентов.

Сезонность. Сопоставляя дату первой покупки с датой повторной или с общим объемом продаж, можно выделить пользователей, «отвалившихся» после праздников или высокого сезона. Эти данные позволят понять, нужно ли маркетологам удваивать усилия по завершении сезона.

Особенности поведения, связанные с местоположением. Если вы размещаете контекстную рекламу, нацеленную на разные города или страны, стоит сравнивать месячные доходы, которые приносят те или иные местоположения. Так вы узнаете, в каких регионах показатель жизненной ценности клиента (LTV) растет, а в каких — падает.

Разные модели анализа очень сильно отличаются друг от друга, и переход на когортный анализ может быть ответственным решением. Для многих маркетологов это необходимый шаг при работе с кампаниями по привлечению клиентов.

Внедрение когортного анализа в отчеты по контекстной рекламе часто становится мощным средством для показа реальных долгосрочных трендов удержания, оттока и атрибуции клиентов (причем на более детальном уровне). Что еще более важно, этот инструмент помогает обнаружить новые возможности, скрытые внутри вашей контекстной стратегии.

Мнение эксперта 

Чиликин.pngМихаил Чиликин, руководитель направления веб-аналитики i-Media
Когортный анализ — отличный метод оценки эффективности продукта и маркетинга. К сожалению, он не очень распространен на нашем рынке из-за своей сложности (а готовых инструментов с простой интеграцией мало). Внедрение подобной отчетности стоит свеч, если у вашего бизнеса длинный цикл сделки и/или жизни клиентов. Когортный анализ будет полезен компаниям, предлагающим услуги по подписке (SaaS приложения, видеоигры и тому подобное). Он также пригодится, если у вас цикличные продажи (можно вспомнить рынок косметологических услуг, сервисы уборки и стирки). Оценка по когортам поможет и в том случае, если ваши клиенты долго принимают решение о покупке (например, в электронной торговле с высоким средним чеком или на рынке b2b).

Запуск когортного анализа может перевернуть понимание эффективности маркетинга, которое сформировалось в компании, использовавшей классические методы его оценки. Поэтому если вы еще не внедрили такой подход — самое время попробовать.


(Голосов: 1, Рейтинг: 5)
Читайте нас в Telegram - digital_bar

Есть о чем рассказать? Тогда присылайте свои материалы Даше Калинской


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
#SEOnews14: мы празднуем – вы получаете подарки!
Анна Макарова
358
комментариев
0
читателей
Полный профиль
Анна Макарова - Гость, добрый день! С победителями мы связывались сразу после розыгрыша. Если мы вам не написали, значит, ваш номер не выпал. Но не расстраивайтесь, у нас обязательно будут новые розыгрыши!
Google Data Studio: делаем красивые отчеты по контекстной рекламе для клиентов
Светлана Зубрицкая
1
комментарий
0
читателей
Полный профиль
Светлана Зубрицкая - Нужно убрать пробелы между строк и заменить кавычки на вот такие "
Как ускорить сайт на WordPress, чтобы получить 100/100 в Google PageSpeed Insights
Георгий
1
комментарий
0
читателей
Полный профиль
Георгий - Все что рекомендуется в этой статье есть у w.tools. Ни разу не пожалел что подключился. Своя CDN сеть, кеш статики и динамики, минификация js\css и кешируемого html, оптимизация всех типов картинок и еще куча всего полезного. Сайт летает и я не знаю проблем. Могу рекомендовать от души.
Война с дубликатами. Как нужно и как не нужно канонизировать URL
Ann Yaroshenko
5
комментариев
0
читателей
Полный профиль
Ann Yaroshenko - Дмитрий, добрый день! Если вы проставили на странице с автозапчастями rel=canonical ( а я вижу в коде, что не проставили) или в HTTP хедере, то бот, как правило: выберит ту страницу главной, которую вы указали в rel=canonical ссылке. Eсли же вы этого не сделали, то бот сам выберит оригинал (алгоритмы, по которым бот это делает, скрыты Googl-ом)
«Аудит, чтобы ты заплакала…», или Что делать, когда получил сторонний аудит сайта
Евгений
1
комментарий
0
читателей
Полный профиль
Евгений - Воообще, на самом деле здесь двоякое впечатление от таких аудитов. Конечно, для полного глубокого анализа и подготовки рекомендаций по сайту - нужны доступы к системам аналитики и инструментам вебмастера. Но если оценивать подобные аудиты с точки зрения чистого SEO (которое все больше и больше становится лишь малой частью digital-маркетинга, лишь одним из каналов) - они имеют место быть. Но с оговоркой, что они сделаны с учетом анализа конкурентов/отрасли. Современные инструменты и алгоритмы позволяют делать это маркетологам в автоматическом режиме, и даже давать рекомендации - возможностями машинного обучения уже никого не удивишь. Да, полное перечисление "мифического" списка ошибок, построенного по предикативным правилам, да еще и с учетом устаревших особенностей ПС - это явный признак некачественного аудита. В первую очередь потому, что эти "ошибки" следует рассматривать в качестве рекомендаций от ПС (как и говорится в справочнике вебмастера у Яндекса/Google). Однако если эти данные даются с отсылкой на данные о конкурентах, об отрасли, используются методы ML и Natural language processing для обработки исходных данных, кластеризации запросов, классификации страниц/запросов/сайтов, определения структуры документа - такие отчеты имеют право на существование. Но ключевым моментом является то, что подобные инструменты достаточно сложны в разработке, а значит требуют квалифицированных специалистов для их разработки. Которых просто нет у студий рассылающих подобные "сео отчеты". Подобные отчеты по "ошибках" тоже неплохой источник информации, но лишь на 0 этапе анализа сайта. И в принципе, теоретически, возможно почти полное составление "хороших аудитов" без участия маркетолога, на основе лишь открытых данных сайта/внешних источников, но только при соответствующем применении всех современных возможностей анализа данных и рекомендательных систем. И в любом случае подобный "хороший отчет" требует конечного заключения от эксперта.
От мечты стать юристом к собственному SMM-агентству. Как найти себя в современном цифровом мире
Виктор Брухис
5
комментариев
0
читателей
Полный профиль
Виктор Брухис - Статья выглядит так, как пожелали редакторы и интервьюер) Вопросы к интервью подбирал не я)) Хотя, в целом я согласен с вашим видением. А за пожелание удачи большое спасибо!
BDD 2019: Как перестать убивать время на сбор и обработку тонны данных для SEO-аудита
Feth
1
комментарий
0
читателей
Полный профиль
Feth - Тот момент, когда от статьи в интернете получаешь больше полезных знаний и навыков, чем от своего начальства. По статьям нетпиковцев можно учебник про SEO уже сшивать, ребята молодцы. Спасибо, что делитесь информацией.
Как я пытался купить CRM-систему, но мне ее поленились продать
Kristina
1
комментарий
0
читателей
Полный профиль
Kristina - Очень рекомендую CRM-систему польской фирмы Firmao. Все функции настраиваются в соответствии с индивидуальным потребностям компании! Советую попробовать бесплатную демо-версию, чтобы попробовать все необходимые функции, без лишних кнопок и траты дополнительных финансов! :) Сайт: firmao.ru/info
Как улучшить репутацию сайта недвижимости с помощью крауд-маркетинга
Евгений
2
комментария
0
читателей
Полный профиль
Евгений - а у вас какое впечатление от статьи?
10 элементов сайта, которые гарантированно отпугнут посетителей
Андрей
2
комментария
0
читателей
Полный профиль
Андрей - Ну типа потому что клиентское seo больше для коммерции предназначено. Типа контентники и сами знают что делать. В коммерции можно тысячу причин найти чтобы поработать с сайтом, а с контентными такие фокусы уже не прокатят, поэтому и не пишут. Всё продвижение для контентников сеошники описывают в трех словах: скорость, качество, систематичность. А, ну ещё конечно же СЯ, как же я про него забыл (фундамент жеть!).
ТОП КОММЕНТАТОРОВ
Комментариев
910
Комментариев
834
Комментариев
554
Комментариев
540
Комментариев
483
Комментариев
373
Комментариев
358
Комментариев
262
Комментариев
249
Комментариев
171
Комментариев
156
Комментариев
137
Комментариев
121
Комментариев
106
Комментариев
97
Комментариев
97
Комментариев
96
Комментариев
80
Комментариев
77
Комментариев
73
Комментариев
67
Комментариев
60
Комментариев
59
Комментариев
57
Комментариев
55

Отправьте отзыв!
Отправьте отзыв!