×
Россия +7 (495) 139-20-33

Продолжаем изучать Баден-Баден. Что считается спамом, где пороги срабатывания фильтра?

Россия +7 (495) 139-20-33
Шрифт:
3 12313

SEOnews продолжает следить за «Баден-Баденом» глазами экспертов. Алексей Трудов провел исследование и теперь рассказывает, что ББ считает спамом и где пороги срабатывания фильтра.

***

Едва опубликовал исследование алгоритма «Баден-Баден», как меня буквально завалили вопросами про конкретные цифры для выявленных показателей. На что ориентироваться? Какой уровень водности или там индекса биграммы/униграммы считать хорошим, а какой — плохим? К чему стремиться при доработке текстов? Где буйки, за которые нельзя заплывать?..

Вопросы совершенно закономерные. Безусловно, понимать точные критерии попадания страницы под фильтр было бы просто здорово.

Однако эта задача очень сложна. Поймать различия на нескольких десятках сайтов по отдельности и усреднить их для всей выборки сравнительно просто. Еще более важно, что в этом случае мы можем сравнительно уверенно интерпретировать данные. Хостовые факторы картину не искажают, абсолютные различия переведены в проценты, благодаря чему их можно сравнивать. Просто копаем в сторону самых сильных отклонений и все.

Благодать, основные тенденции выявлены. На практике можно проделать аналогичное исследование для любого сайта и найти самые критичные проблемы конкретных текстов.

Если же просто найти среднее значение текстовых метрик у страниц, попавших под Баден-Баден, то эти данные сами по себе мало что будут значить. Мы не можем быть уверены, отловленные цифры будут актуальны для другого сайта в другой тематике.

В целом, мое мнение по этому вопросу совпадает с тем, что писал Станислав Ставский:

Если попытаться определить пороги срабатывания алгоритма, то это практически нереальная, на мой взгляд, задача. В выборках всегда будут примеры, которые должны упасть, но не падают. И, возможно, наоборот. 900 факторов против одного-двух факторов текстового антиспама — всегда будут ситуации, когда документы будут вытягиваться наверх другими сигналами.

Тем не менее даже сомнительные ориентиры могут пригодиться (главное не забывать, откуда они взялись, и не считать их высеченными в камне). Попробуем их выделить, чтобы иметь отправную точку для анализа, задать систему координат.

Хотя, зачем я вру. Главная задача — иметь ссылку, которую можно отправить в ответ на вопрос «много или мало, когда в анализе текстов в bez-bubna.com получаются такие цифры»:

Анализ текстов Статистика.png

Методика: что и как считаем

Выборка — та же, что и в прошлом исследовании (благо, для этих страниц уже посчитаны все значимые текстовые метрики, определено, попал ли URL под санкции, отброшен откровенный спам). Всего 4297, из них под «Баден-Баденом» 2772.

Однако теперь мы не разбиваем выборку по сайтам (нас интересуют универсальные цифры!), а смотрим средние значения показателей по всем URL сразу, сравнивая «хорошие» и «плохие».

Разумеется, любая разница между средними величинами может оказаться случайной. Крайне важно отличать истинные различия от случайных. К счастью, тут не нужно изобретать велосипед — метод для проверки статистической значимости найденных различий появился более века назад. Это ​t-критерий Стьюдента. Интересующиеся могут загуглить или почитать самое простое объяснение, какое я только встречал, на сайте «Статистика и котики».

Для понимания этой статьи достаточно помнить, что с помощью t-критерия вычисляется вероятность отсутствия различий между средними из двух выборок. Грубо говоря, если для той или иной метрики (например, тошноты) такой шанс больше 1%, то считаем разницу по параметру не доказанной. Если меньше — то берем на вооружение и рассматриваем среднее значение для «плохих» страниц как опасный порог (возможны и другие интерпретации, важнее всего наличие/отсутствие различий как таковое).

Результаты по средним значениям и ​t-критерию

Вот моя рабочая табличка:

Результаты по средним значениям и t-критерию.png

Долго вглядываться в нее не надо, главный вывод — статистически достоверные различия демонстрируют только средние значения по академической тошноте и по водности (вероятность значительно меньше 1%, выделено зеленым). Все остальное принимать во внимание нельзя.

Полезным ориентиром можно считать только порог по водности. Видим, что среднее для плохих страниц почти 0,31, а для хороших — 0,29. В общем-то результат ожидаем. «Вода» — естественная часть любых статей, но даже небольшое перенасыщение стоп-словами ухудшает качество текста. Это как машинное масло: без него никуда, но если перелить — мотор не обрадуется.

Конечно, «нормальная» водность может сильно меняться в зависимости от тематики (например, в юридических текстах много перечислений и мало вводных оборотов, а в статьях о литературе – скорее наоборот).

Второй параметр, для которого различия достоверны, академическая тошнота. Вряд ли он особо нам поможет. Тем более что из таблицы можно сделать вывод — «пихай побольше ключей, и будет хорошо». Ведь на страницах под фильтром тошнота ниже. Этот парадокс я подробно разобрал в предыдущей статье.

Можно ли найти дополнительные пороги? Можно!

Введем поправку на водность

Итак, мы получили еще одно свидетельство в пользу того, что тексты с высокой водностью Яндекс не любит. Естественно, мы хотим знать больше. Что еще ему может не нравиться, когда с водностью все в порядке? Сформируем новую выборку проблемных страниц. Возьмем для анализа только те, где водность не превышает 0,3:

Введем поправку на водность.png

Ого, так куда интереснее!

  • Исчезла какая-либо статистическая значимость в отношении тошноты. По всей видимости, она и правда никак не влияет на наложение фильтра (напоминаю, что я работал с выборкой достаточно качественных сайтов, где этот показатель не зашкаливал).
  • Появились значимые различия для показателя вариативности. Впрочем, в абсолютном выражении разница невелика: 0,23 против 0,24. Как и водность, это весьма устойчивый показатель, с небольшой изменчивостью.
  • Наконец, есть достоверная разница (обратите внимание на количество нулей в четвертом столбце!) по тошноте биграмм и триграмм, индексам биграммы-униграмы и триграммы-униграммы.

Выводы

Пропущу миллион оговорок и напоминаний о том, что реальная картина сложнее, чем ограниченная выборка, что различие по параметру еще не говорит о причинно-следственной связи и т.д. и т.п. Надеюсь, это и так понятно. По уму, конечно, нужно строить модель с использованием логистической регрессии. Проще говоря — подбирать формулу, которая бы определяла вероятность попадания страницы под фильтр на основе сразу всех значимых факторов. Я двигаюсь в этом направлении, но прогнозировать что-то сложно, поэтому пока работаем с тем, что есть.

Итак, отправными точками для анализа страниц-кандидатов на попадание под Баден-Баден можно считать:

  • Водность 0,31 и более.
  • Вариативность 0,23 и менее.
  • Тошноту биграмм 3,6 и более
  • Тошноту триграмм 1,8 и более.
  • Индекс биграммы/униграммы 32 и более.
  • Индекс триграммы/униграммы 17 и более.
(Голосов: 6, Рейтинг: 5)
Читайте нас в Telegram - digital_bar

Есть о чем рассказать? Тогда присылайте свои материалы Ане Макаровой


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
  • Юрий Жигалов
    3
    комментария
    0
    читателей
    Юрий Жигалов
    больше года назад
    Планируется ли сделать в сервисе проверку на эти данные для одной страницы? Я вижу только тарифы для проверки всего сайта
    -
    0
    +
    Ответить
  • Станислав Елистратов
    5
    комментариев
    0
    читателей
    Станислав Елистратов
    больше года назад
    Подскажите, пожалуйста, софт или инструменты, которыми можно эти значения в своих текстах проверять.
    -
    2
    +
    Ответить
    • Alexey Trudov
      6
      комментариев
      0
      читателей
      Alexey Trudov
      Станислав Елистратов
      больше года назад
      Станислав, вот о моей разработка (оттуда же скриншот):
      alexeytrudov.com/web-marketing/service/novyie-instrumentyi-dlya-rabotyi-s-kontentom.html

      Других в открытом доступе я не встречал. Есть проверяющие отдельные элементы, например arsenkin.ru/tools/lemma/ умеет выделять n-граммы, но чтобы видеть все параметры сразу - такого нет.
      -
      0
      +
      Ответить
ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
Что скрывает «Прогноз бюджета Яндекс.Директ»?
Михаил Мухин
14
комментариев
0
читателей
Полный профиль
Михаил Мухин - Здравствуйте! 1-2. Считает стенд. Ссылка на него дана, но могу повторить: online.p-c-l.ru/competition/task/card/id/106. Нажмите на кнопку "Начать" и заранее приготовьте прогноз бюджета Яндекс. Суть расчета: перебор комбинаций всех ставок на всех фразах, построение бюджетных когорт - бюджетов с одинаковым СРС, отбор в каждой когорте бюджета с максимальным количеством кликов и ..., да упорядочивание этих бюджетов по мере возрастания СРС, причем берем не все, а с фиксированным шагом. 3. Гугл считается через поправочные коэффициенты. Мы перевариваем океан данных и представляем их. На удивление, получается не менее, хотя и не более точно, как и прогноз Яндекс. Конечно, нужно понимать, что это очень примерные прикидки, фактически перевод неточного прогноза Яндекс в удобочитаемую форму, не больше. Самое интересное начинается, когда применяешь метод бюджетных когорт к измерению показателей фраз на реальной рекламной кампании в режиме 48х7. Первые результаты очень хорошие. Если хотите присоединиться к бесплатному тестированию, напишите Эльвире r-support@r-broker.ru. В теме укажите "хочу присоединиться к тестам Умного управления рекламой"
#SEOnews14: мы празднуем – вы получаете подарки!
Анна Макарова
362
комментария
0
читателей
Полный профиль
Анна Макарова - Гость, добрый день! С победителями мы связывались сразу после розыгрыша. Если мы вам не написали, значит, ваш номер не выпал. Но не расстраивайтесь, у нас обязательно будут новые розыгрыши!
Ссылочное продвижение локальных сайтов: ТОП худших SEO-методов
demimurych
5
комментариев
0
читателей
Полный профиль
demimurych - о господи. это для регионального сайта? в яндексе? где у сайта по региону конкурентов меньше чем выдачи на двух страницах из которых перваш это реклама москвы? потешно ей богу. ктото чего то не понеимает.
Как ускорить сайт на WordPress, чтобы получить 100/100 в Google PageSpeed Insights
Георгий
1
комментарий
0
читателей
Полный профиль
Георгий - Все что рекомендуется в этой статье есть у w.tools. Ни разу не пожалел что подключился. Своя CDN сеть, кеш статики и динамики, минификация js\css и кешируемого html, оптимизация всех типов картинок и еще куча всего полезного. Сайт летает и я не знаю проблем. Могу рекомендовать от души.
«Аудит, чтобы ты заплакала…», или Что делать, когда получил сторонний аудит сайта
Евгений
1
комментарий
0
читателей
Полный профиль
Евгений - Воообще, на самом деле здесь двоякое впечатление от таких аудитов. Конечно, для полного глубокого анализа и подготовки рекомендаций по сайту - нужны доступы к системам аналитики и инструментам вебмастера. Но если оценивать подобные аудиты с точки зрения чистого SEO (которое все больше и больше становится лишь малой частью digital-маркетинга, лишь одним из каналов) - они имеют место быть. Но с оговоркой, что они сделаны с учетом анализа конкурентов/отрасли. Современные инструменты и алгоритмы позволяют делать это маркетологам в автоматическом режиме, и даже давать рекомендации - возможностями машинного обучения уже никого не удивишь. Да, полное перечисление "мифического" списка ошибок, построенного по предикативным правилам, да еще и с учетом устаревших особенностей ПС - это явный признак некачественного аудита. В первую очередь потому, что эти "ошибки" следует рассматривать в качестве рекомендаций от ПС (как и говорится в справочнике вебмастера у Яндекса/Google). Однако если эти данные даются с отсылкой на данные о конкурентах, об отрасли, используются методы ML и Natural language processing для обработки исходных данных, кластеризации запросов, классификации страниц/запросов/сайтов, определения структуры документа - такие отчеты имеют право на существование. Но ключевым моментом является то, что подобные инструменты достаточно сложны в разработке, а значит требуют квалифицированных специалистов для их разработки. Которых просто нет у студий рассылающих подобные "сео отчеты". Подобные отчеты по "ошибках" тоже неплохой источник информации, но лишь на 0 этапе анализа сайта. И в принципе, теоретически, возможно почти полное составление "хороших аудитов" без участия маркетолога, на основе лишь открытых данных сайта/внешних источников, но только при соответствующем применении всех современных возможностей анализа данных и рекомендательных систем. И в любом случае подобный "хороший отчет" требует конечного заключения от эксперта.
От мечты стать юристом к собственному SMM-агентству. Как найти себя в современном цифровом мире
Виктор Брухис
5
комментариев
0
читателей
Полный профиль
Виктор Брухис - Статья выглядит так, как пожелали редакторы и интервьюер) Вопросы к интервью подбирал не я)) Хотя, в целом я согласен с вашим видением. А за пожелание удачи большое спасибо!
BDD 2019: Как перестать убивать время на сбор и обработку тонны данных для SEO-аудита
Kosta Bankovski
4
комментария
0
читателей
Полный профиль
Kosta Bankovski - Спасибо за приятные слова! Буду и дальше делиться наработками ;)
Как провести анализ содержания страниц товаров и категорий
Никита Седнин
3
комментария
0
читателей
Полный профиль
Никита Седнин - Спасибо!
Как вывести сайт в ТОП 10 Google в 2019 году
Роман
1
комментарий
0
читателей
Полный профиль
Роман - Вот скажите пожалуйста, Мне разработали сайт на мою фирму, www.линк.kz и теперь надо решить, сео продвижение у нас стоит около 25000 - 30000 руб. в месяц, для меня сумма не маленькая стоит ли оно того? или можно просто оптимизировать сайт в плане СЕО и выходить в ТОП за счет трафика?
Как я пытался купить CRM-систему, но мне ее поленились продать
Kristina
1
комментарий
0
читателей
Полный профиль
Kristina - Очень рекомендую CRM-систему польской фирмы Firmao. Все функции настраиваются в соответствии с индивидуальным потребностям компании! Советую попробовать бесплатную демо-версию, чтобы попробовать все необходимые функции, без лишних кнопок и траты дополнительных финансов! :) Сайт: firmao.ru/info
ТОП КОММЕНТАТОРОВ
Комментариев
910
Комментариев
834
Комментариев
554
Комментариев
540
Комментариев
483
Комментариев
373
Комментариев
362
Комментариев
262
Комментариев
249
Комментариев
171
Комментариев
156
Комментариев
137
Комментариев
121
Комментариев
107
Комментариев
97
Комментариев
97
Комментариев
96
Комментариев
82
Комментариев
80
Комментариев
77
Комментариев
67
Комментариев
60
Комментариев
59
Комментариев
57
Комментариев
55

Отправьте отзыв!
Отправьте отзыв!