Россия+7 (495) 960-65-87

Продолжаем изучать Баден-Баден. Что считается спамом, где пороги срабатывания фильтра?

Россия+7 (495) 960-65-87
Шрифт:
3 11827

SEOnews продолжает следить за «Баден-Баденом» глазами экспертов. Алексей Трудов провел исследование и теперь рассказывает, что ББ считает спамом и где пороги срабатывания фильтра.

***

Едва опубликовал исследование алгоритма «Баден-Баден», как меня буквально завалили вопросами про конкретные цифры для выявленных показателей. На что ориентироваться? Какой уровень водности или там индекса биграммы/униграммы считать хорошим, а какой — плохим? К чему стремиться при доработке текстов? Где буйки, за которые нельзя заплывать?..

Вопросы совершенно закономерные. Безусловно, понимать точные критерии попадания страницы под фильтр было бы просто здорово.

Однако эта задача очень сложна. Поймать различия на нескольких десятках сайтов по отдельности и усреднить их для всей выборки сравнительно просто. Еще более важно, что в этом случае мы можем сравнительно уверенно интерпретировать данные. Хостовые факторы картину не искажают, абсолютные различия переведены в проценты, благодаря чему их можно сравнивать. Просто копаем в сторону самых сильных отклонений и все.

Благодать, основные тенденции выявлены. На практике можно проделать аналогичное исследование для любого сайта и найти самые критичные проблемы конкретных текстов.

Если же просто найти среднее значение текстовых метрик у страниц, попавших под Баден-Баден, то эти данные сами по себе мало что будут значить. Мы не можем быть уверены, отловленные цифры будут актуальны для другого сайта в другой тематике.

В целом, мое мнение по этому вопросу совпадает с тем, что писал Станислав Ставский:

Если попытаться определить пороги срабатывания алгоритма, то это практически нереальная, на мой взгляд, задача. В выборках всегда будут примеры, которые должны упасть, но не падают. И, возможно, наоборот. 900 факторов против одного-двух факторов текстового антиспама — всегда будут ситуации, когда документы будут вытягиваться наверх другими сигналами.

Тем не менее даже сомнительные ориентиры могут пригодиться (главное не забывать, откуда они взялись, и не считать их высеченными в камне). Попробуем их выделить, чтобы иметь отправную точку для анализа, задать систему координат.

Хотя, зачем я вру. Главная задача — иметь ссылку, которую можно отправить в ответ на вопрос «много или мало, когда в анализе текстов в bez-bubna.com получаются такие цифры»:

Анализ текстов Статистика.png

Методика: что и как считаем

Выборка — та же, что и в прошлом исследовании (благо, для этих страниц уже посчитаны все значимые текстовые метрики, определено, попал ли URL под санкции, отброшен откровенный спам). Всего 4297, из них под «Баден-Баденом» 2772.

Однако теперь мы не разбиваем выборку по сайтам (нас интересуют универсальные цифры!), а смотрим средние значения показателей по всем URL сразу, сравнивая «хорошие» и «плохие».

Разумеется, любая разница между средними величинами может оказаться случайной. Крайне важно отличать истинные различия от случайных. К счастью, тут не нужно изобретать велосипед — метод для проверки статистической значимости найденных различий появился более века назад. Это ​t-критерий Стьюдента. Интересующиеся могут загуглить или почитать самое простое объяснение, какое я только встречал, на сайте «Статистика и котики».

Для понимания этой статьи достаточно помнить, что с помощью t-критерия вычисляется вероятность отсутствия различий между средними из двух выборок. Грубо говоря, если для той или иной метрики (например, тошноты) такой шанс больше 1%, то считаем разницу по параметру не доказанной. Если меньше — то берем на вооружение и рассматриваем среднее значение для «плохих» страниц как опасный порог (возможны и другие интерпретации, важнее всего наличие/отсутствие различий как таковое).

Результаты по средним значениям и ​t-критерию

Вот моя рабочая табличка:

Результаты по средним значениям и t-критерию.png

Долго вглядываться в нее не надо, главный вывод — статистически достоверные различия демонстрируют только средние значения по академической тошноте и по водности (вероятность значительно меньше 1%, выделено зеленым). Все остальное принимать во внимание нельзя.

Полезным ориентиром можно считать только порог по водности. Видим, что среднее для плохих страниц почти 0,31, а для хороших — 0,29. В общем-то результат ожидаем. «Вода» — естественная часть любых статей, но даже небольшое перенасыщение стоп-словами ухудшает качество текста. Это как машинное масло: без него никуда, но если перелить — мотор не обрадуется.

Конечно, «нормальная» водность может сильно меняться в зависимости от тематики (например, в юридических текстах много перечислений и мало вводных оборотов, а в статьях о литературе – скорее наоборот).

Второй параметр, для которого различия достоверны, академическая тошнота. Вряд ли он особо нам поможет. Тем более что из таблицы можно сделать вывод — «пихай побольше ключей, и будет хорошо». Ведь на страницах под фильтром тошнота ниже. Этот парадокс я подробно разобрал в предыдущей статье.

Можно ли найти дополнительные пороги? Можно!

Введем поправку на водность

Итак, мы получили еще одно свидетельство в пользу того, что тексты с высокой водностью Яндекс не любит. Естественно, мы хотим знать больше. Что еще ему может не нравиться, когда с водностью все в порядке? Сформируем новую выборку проблемных страниц. Возьмем для анализа только те, где водность не превышает 0,3:

Введем поправку на водность.png

Ого, так куда интереснее!

  • Исчезла какая-либо статистическая значимость в отношении тошноты. По всей видимости, она и правда никак не влияет на наложение фильтра (напоминаю, что я работал с выборкой достаточно качественных сайтов, где этот показатель не зашкаливал).
  • Появились значимые различия для показателя вариативности. Впрочем, в абсолютном выражении разница невелика: 0,23 против 0,24. Как и водность, это весьма устойчивый показатель, с небольшой изменчивостью.
  • Наконец, есть достоверная разница (обратите внимание на количество нулей в четвертом столбце!) по тошноте биграмм и триграмм, индексам биграммы-униграмы и триграммы-униграммы.

Выводы

Пропущу миллион оговорок и напоминаний о том, что реальная картина сложнее, чем ограниченная выборка, что различие по параметру еще не говорит о причинно-следственной связи и т.д. и т.п. Надеюсь, это и так понятно. По уму, конечно, нужно строить модель с использованием логистической регрессии. Проще говоря — подбирать формулу, которая бы определяла вероятность попадания страницы под фильтр на основе сразу всех значимых факторов. Я двигаюсь в этом направлении, но прогнозировать что-то сложно, поэтому пока работаем с тем, что есть.

Итак, отправными точками для анализа страниц-кандидатов на попадание под Баден-Баден можно считать:

  • Водность 0,31 и более.
  • Вариативность 0,23 и менее.
  • Тошноту биграмм 3,6 и более
  • Тошноту триграмм 1,8 и более.
  • Индекс биграммы/униграммы 32 и более.
  • Индекс триграммы/униграммы 17 и более.
(Нет голосов)
Читайте нас в Telegram - digital_bar

Есть о чем рассказать? Тогда присылайте свои материалы Даше Калинской


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
  • Юрий Жигалов
    3
    комментария
    0
    читателей
    Юрий Жигалов
    больше года назад
    Планируется ли сделать в сервисе проверку на эти данные для одной страницы? Я вижу только тарифы для проверки всего сайта
    -
    0
    +
    Ответить
  • Станислав Елистратов
    5
    комментариев
    0
    читателей
    Станислав Елистратов
    больше года назад
    Подскажите, пожалуйста, софт или инструменты, которыми можно эти значения в своих текстах проверять.
    -
    2
    +
    Ответить
    • Alexey Trudov
      6
      комментариев
      0
      читателей
      Станислав, вот о моей разработка (оттуда же скриншот):
      alexeytrudov.com/web-marketing/service/novyie-instrumentyi-dlya-rabotyi-s-kontentom.html

      Других в открытом доступе я не встречал. Есть проверяющие отдельные элементы, например arsenkin.ru/tools/lemma/ умеет выделять n-граммы, но чтобы видеть все параметры сразу - такого нет.
      -
      0
      +
      Ответить
ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
Сколько ссылок помогут продвинуть молодой сайт
Павел Андрейчук
38
комментариев
0
читателей
Полный профиль
Павел Андрейчук - Дело в том, что вряд ли в ваших платных "качественных" кейсах найдётся хоть пару % действительно новой и полезной информации которой бы не было на общедоступных источниках.
Сайт на WordPress: за и против
Мира Смурков
1
комментарий
0
читателей
Полный профиль
Мира Смурков - Людмила, я согласен с большинством комментаторов. Вы хоть один полноценный магазин сделали на этих движках? Woocommerce это система с супер возможностями. И к ней есть дополнительные модули, с функционалом, который вряд ли появиться на Битрикс. А самому это программировать - сотни тысяч рублей на разработку. А приведя в пример сложности с robots.txt и Sitemap вы ставите под вопрос вашу компетенцию в понимании Интернет-бизнеса и веб-разработки в целом. Во-первых это такие мелочи, а во-вторых это все делается на вордпресса за 2 минуты, и опять же с возможностями многократно превышающими Битрикс.
Обзор популярных CMS: плюсы и минусы
Андрей Литвиненко
2
комментария
0
читателей
Полный профиль
Андрей Литвиненко - + там где нужно прописать каноникал, там где нужно поставить мета тег ноиндекс (т.к. Гугл не всегда следует правилам robots.txt) ну и то что выше, к техническим сео возможнлстям можно еще отнести легкое и хотя бы полуавтоматическое добавление микроразметки по сайту, увы "из коробки" такого функционала нет ни в одной cms, все на допиливаниях
Google обошел Яндекс по популярности в России в 2018 году: исследование SEO Auditor
Рамблер
1
комментарий
0
читателей
Полный профиль
Рамблер - Вот вроде отечественный - это сказано верно.. «Я́ндекс» — российская транснациональная компания, зарегистрированная в Нидерландах. Так говорится в Википедии. И с хрена ли ОТЕЧЕСТВЕННЫЙ поисковик зарегистрирован в Европе? И где платится основная часть налогов? Ну-ууу, точно не в России. И если запахнет жаренным, то был Яндекс и нет Яндекса!
8 методик в SEO, от которых давно пора отказаться
Евгений Сметанин
12
комментариев
0
читателей
Полный профиль
Евгений Сметанин - Факторов вообще очень много, согласитесь, вы будете использовать максимальное их количество, особенно, если в ТОПе засели агрегаторы с сумасшедшими ПФ. В таких случаях, вхождение ключа в домен для маленького профильного сайта, сыграет свою положительную роль. Конечно же, если контент на страницах хорошего качества. У меня есть несколько успешных кейсов на эту тему. На сайте продают несколько видов товаров, а выстреливает в ТОП тот, название которого присутствует в доменном имени. Как корабль назовешь, так он и поплывет, верно?))
Инструкция: настраиваем цели Яндекс.Метрики через Google Tag Manager
Roman Gorkunenko
1
комментарий
0
читателей
Полный профиль
Roman Gorkunenko - Здравствуйте. Подскажите, пожалуйста, можно с айпи метрики вытащить среднюю стоимость клика по утм меткам? В метрике есть такой шаблон tags_u_t_m, но он не совместим с меткой директа, у них разные префиксы.
Google Data Studio: делаем красивые отчеты по контекстной рекламе для клиентов
Сергей
1
комментарий
0
читателей
Полный профиль
Сергей - Добрый день! Спасибо за статью, полезный материал! Могли бы подробнее расписать, как настроить вывод Гугл Таблиц с привязкой к отчетному периоду? Заранее спасибо!
Аудит структуры интернет-магазина мебели от «Ашманов и партнеры»
Дмитрий
11
комментариев
0
читателей
Полный профиль
Дмитрий - Сергей, а вы допускаете, что вся ваша жизнь - seo-миф?
Как выбрать подрядчика для продвижения сайта: 7 уровней воронки поиска
aashutosh
1
комментарий
0
читателей
Полный профиль
aashutosh - data science training institute in noida- Webtrackker Technology (8802820025) providing Data Science Training in Noida. Get ✓ 40 Hours Learning training✓ 70 Hrs Projects ✓ 24 X 7 Support ✓ Job Assistance. WEBTRACKKER TECHNOLOGY (P) LTD. C - 67, sector- 63, Noida, India. E-47 Sector 3, Noida, India. +91 - 8802820025 0120-433-0760 +91 - 8810252423 012 - 04204716 EMAIL:info@webtrackker.com webtrackker.com/Best-Data-Science-Training-Institute-in-Noida.php
Какой сюрприз! 8 историй про новогодние подарки от digital-компаний
Мистер Гость
1
комментарий
0
читателей
Полный профиль
Мистер Гость - У нас был более универсальный digital-подход - дарили электронные подарочные карты)
ТОП КОММЕНТАТОРОВ
Комментариев
910
Комментариев
834
Комментариев
554
Комментариев
540
Комментариев
483
Комментариев
373
Комментариев
345
Комментариев
262
Комментариев
247
Комментариев
171
Комментариев
156
Комментариев
137
Комментариев
121
Комментариев
101
Комментариев
97
Комментариев
97
Комментариев
96
Комментариев
80
Комментариев
77
Комментариев
67
Комментариев
60
Комментариев
59
Комментариев
59
Комментариев
57
Комментариев
55

Отправьте отзыв!
Отправьте отзыв!