×
Россия +7 (495) 139-20-33

Товарные рекомендации для повышения конверсии сайта

Россия +7 (495) 139-20-33
Шрифт:
0 4803

Партнерский материал

Современный покупатель постоянно сравнивает не только товары и цены, но и обращает внимание на взаимодействие с брендом. Чем лучше бизнес выстраивает отношения с клиентом, тем больше прибыли может получать. 

На конверсию влияет множество факторов, среди них и eSputnik, которые напрямую зависят от предпочтений пользователей. Яркий пример того, что товарные предложения работают, – Amazon, где 70% сайта занимают рекомендательные блоки. 

Позволить себе такую функциональность может не только мировой гигант, а и любой e-commerce. В этом материале разбираемся, как она работает, и рассказываем реальный кейс ретейлера электроники. 

Зачем бизнесу товарные рекомендации 

Согласно исследованию Monetate, рекомендации товаров могут увеличить: 

  • доход компаний – до 300%; 
  • конверсию – до 150%;
  • среднюю стоимость заказа – на 50%. 

Товарные рекомендации исследования 

Статистика Monetate 

Конечно, эти цифры будут варьироваться в зависимости от имеющихся данных, качества и количества рекомендаций. Помимо увеличения конверсии, блоки рекомендованных товаров решают задачи

  • увеличения продолжительности сессии и глубины просмотра;
  • внутренней перелинковки страниц;
  • облегчения навигации на сайте;
  • продвижения ассортимента; 
  • повышения среднего чека через cross-, upsell;
  • увеличения частоты покупок; 
  • снижения нагрузки на сотрудников магазина (call-центра и розницы). 

Виды товарных рекомендаций 

Товарные рекомендации делятся на такие типы: 

  1. Общие – учитываются данные большой выборки пользователей. Так можно формировать блоки с самыми просматриваемыми и покупаемыми товарами и показывать их посетителям, о которых еще не собрана история. 
  2. Основанные на данных товара – учитывается информация о категориях, характеристиках, названии и стоимости товаров. Подходят для подбора похожих товаров и комплектов. 
  3. Основанные на данных пользователя – учитывается поведение определенного контакта на сайте, в рассылках, его предыдущие покупки. Это могут быть персональные рекомендации, просмотренные ранее и сопутствующие к уже купленным товарам. 

Способы создания рекомендаций 

Существует несколько вариантов внедрения товарных рекомендаций: 

1. Самостоятельно – отдать разработку алгоритма inhouse-программистам. 

+ из преимуществ – возможность вносить любые изменения в алгоритм; 

– недостатки – самый ресурсозатратный способ, к тому же потребуется немало времени, чтобы провести тестирования и ввести в работу алгоритм. 

2. Размещение товаров на маркетплейсе – зачастую на крупных площадках уже есть такая функциональность. 

+ простое и быстрое внедрение; 

– в рекомендациях будет не только ваш ассортимент, но и конкурентов; 

– нельзя использовать данные пользователей для дальнейшей коммуникации в других каналах. 

3. SaaS – на рынке электронной коммерции достаточно сервисов, которые предлагают готовое решение. 

+ быстрая установка скрипта на сайт; 

+ нейронная сеть, которая обучается на данных ваших покупателей и товаров; 

+ возможность пользоваться всеми наработками сервиса; 

– из минусов – нет прямого доступа к алгоритмам. Но этот недостаток легко решается: команды таких сервисов могут разработать кастомные блоки и настраивать ИИ согласно вашим требованиям. 

Оценка эффективности товарных предложений 

Если ваша CMS или маркетплейс не показывает статистику по товарным предложениям, просмотреть ее можно в Google Analytics. Для этого необходимо отслеживать электронную коммерцию и передавать в GA данные списка товаров: названия, цены, категории, id и т. д. Во вкладке Ecommerce будет отчет «Эффективность списка товаров» (Product List Performance), где можно оценить просмотры, клики, CTR, эффективность позиций, а в расширенном варианте – больше данных о продажах: 

Анализ работы рекомендаций

Анализ работы рекомендаций 

Настраивайте с помощью GTM и используйте data layer. Если вы не сильны в коде, понадобится помощь разработчиков. 

Куда проще отслеживать эффективность товарных предложений в специализированных сервисах, где настройка проводится единожды и статистика доступна сразу после размещения блоков на сайте. 

Статистика рекомендательного блока в eSputnik

Статистика рекомендательного блока в eSputnik 

Использование рекомендаций в разных каналах 

Максимальный результат от товарных предложений получается, если использовать этот инструмент и в других коммуникационных каналах. Блоки с рекомендациями можно добавить практически в любое сообщение. 

Например, около 70% посетителей сайта бросают свои корзины. Создание рассылки «Брошенная корзина» поможет сократить число незавершенных заказов: 

  • через час после того, как пользователь покинул сайт, отправляется email; 
  • если через день заказ не завершен → напоминание в push; 

Пример уведомления с товаром

Пример уведомления с товаром 

  • если через 2 дня заказ не завершен → сообщение в Viber. 

Делать прицельные предложения в рассылках позволяет eSputnik. Аудиторию можно разделить на группы согласно определенным критериям: геолокация, средний чек покупок, дата последнего заказа, любимый бренд и т. д. 

А чтобы каналы работали не только на передачу сообщений, но и на сбор данных о поведении клиента, понадобится омниканальный подход – когда все каналы обогащают одну запись контакта и обмениваются данными между собой. Это поможет создавать еще более точные товарные рекомендации. 

Для организации eSputnik необходима платформа, работающая с клиентскими данными – Customer Data Platform. CDP позволяет объединить информацию из офлайн- и онлайн-каналов в рамках одной системы, а также передавать и получать ее из других сервисов для бесшовной работы с данными. 

Как это работает на практике 

Уже более 7 лет eSputnik – сервис автоматизации маркетинга с функциональностью CDP – предоставляет маркетинговые услуги крупнейшему ритейлеру электроники в Украине «Фокстрот». Клиент входит в Euronics – закупочную группу, охватывающую 37 стран, в т. ч. европейские, Россию, ОАЭ и др. Бренд представлен 164 офлайн-магазинами и сайтом (средний трафик за полгода – 5,58 млн пользователей). 

Начинали сотрудничество с email и постепенно расширяли инструментарий, на сегодня он включает: 

  • омниканальность с использованием Viber-, SMS-, push-, popup-сообщений; 
  • более 25 цепочек и 80 триггеров;
  • персональные и общие товарные рекомендации. 

Для ретейлера товарные рекомендации решают задачи

  • повышения конверсии;
  • роста продаж аксессуаров и сопутствующих товаров. 

Несмотря на то что у «Фокстрота» есть свой отдел разработки, компания приняла решение сотрудничать с eSputnik. На это было несколько причин: 

  • возможность создать связку необходимых каналов и делать рассылки (email, Viber, push, SMS) в одной системе; 
  • алгоритмы eSputnik могут предсказать будущие покупки клиентов с точностью до 60%; 
  • в eSputnik предложения генерируются с помощью искусственного интеллекта, который настраивают лучшие data-science-специалисты. 

Давайте рассмотрим подробнее, как это работает у «Фокстрота», на примере категории смартфонов. К товарам из этой группы есть множество сопутствующих позиций (чехлы, держатели, стекла и т. д.) и все они должны соответствовать определенной модели. Из-за огромного количества комбинаций появляется вероятность, что в подборку попадет неподходящий аксессуар. Поэтому data-специалист дообучает систему и указывает, что необходимо исключить варианты, где не совпадают бренд, название телефона и сопутствующего товара. 

Аналогично настраиваются и другие блоки. Команда eSputnik совместно с представителями бизнеса выделяют категории, которые требуют особого внимания, после чего аналитик донастраивает алгоритм согласно пожеланиям заказчика. 

Блок кросс-продаж в категории смартфонов

Блок кросс-продаж в категории смартфонов 

Кроме того, ретейлер вывел товарные рекомендации для сотрудников в рознице и call-центрах. Это позволило снизить нагрузку на персонал: теперь нет необходимости запоминать весь ассортимент (более 80 тыс. позиций), а предложения будут релевантными для каждого покупателя. 

Если менеджеры передают сведения про офлайн-просмотры и покупки, их также можно использовать в рассылках: напомнить или исключить уже купленное. 

Результаты 

Товарные рекомендации позволили «Фокстроту» увеличить: 

  • продажи аксессуаров – на 16%;
  • глубину просмотра на сайте – на 10%; 
  • общую конверсию – на 5%. 

Выводы 

Товарные рекомендации нужны как компании, так и клиенту. Пользователь экономит свое время → ускоряется процесс покупки → бизнес получает больше прибыли. 

Может показаться, что создание рекомендательных блоков – сложный процесс. Но это не так: некоторые сервисы автоматизации маркетинга, как eSputnik, предоставляют всю необходимую функциональность для формирования рекомендаций, использования их в разных каналах и контроля эффективности в рамках одной платформы. А с настройкой блоков справится любой маркетолог без лишних интеграций и привлечения программистов. В вашем распоряжении будет работающий инструмент увеличения конверсии сайта. 

Внедряйте и получайте лучшие результаты уже сегодня!

(Голосов: 8, Рейтинг: 5)
Читайте нас в Telegram - digital_bar

Есть о чем рассказать? Тогда присылайте свои материалы Марине Ибушевой


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
Известность бренда SEO-компаний 2021
Костя
1
комментарий
0
читателей
Полный профиль
Костя - Iqad самые классные!!!
Медицинская тематика в SEO: исследование спроса
Гость
1
комментарий
0
читателей
Полный профиль
Гость - В файле по ссылке запрос "как понизить голос" относят к 100-тысячным. Каким боком? Вордстат показывает в разы меньшую цифру.
Товары, которые не стоит продавать на Wildberries: типичные ошибки новичков
Николай
1
комментарий
0
читателей
Полный профиль
Николай - Похоже wildberries-edu.ru/
SEO-продвижение монобрендового интернет-магазина. Кейс Casio
Mike
11
комментариев
0
читателей
Полный профиль
Mike - Яндекс сам не знает, что рекомендует. Каноникал они игнорируют все равно. А вот в гугле четко сказано, что если у страниц разный контент, то каноникал ставить не правильно.
Медицинская тематика в SEO: исследование выдачи
УточняюВопросы
1
комментарий
0
читателей
Полный профиль
УточняюВопросы - не очень понятен ваш запрос, можете чуть детальнее расписать? у нас же РУ-семантика, соответственно и язык сайтов в выдаче РУ конечно могуть быть какие то случайные выбросы, но вряд ли значимые
Реклама в Google Ads и AdSense в России работает нестабильно
Гость
2
комментария
0
читателей
Полный профиль
Гость - У тебя трафик с поиска уменьшился?
7 трендов интернет-маркетинга на 2022 год
Иван
1
комментарий
0
читателей
Полный профиль
Иван - За трендами реально будущее!
«Ашманов и партнёры» создали нейросеть, которая генерирует нешаблонные описания для страниц сайтов
Алексей
1
комментарий
0
читателей
Полный профиль
Алексей - Функционал есть, но он не отдельный. Он идёт в дополнение к LSI-анализу, интегрирован в него. Можете увидеть сгенерированные мета-теги на вкладке "Текст" в результатах LSI-анализа. Они будут указаны с пометкой (авто). Также сгенерированные мета-теги указаны в ТЗ для копирайтера, которое формируется по итогам анализа конкурентов.
10 сервисов для работы с текстом в 2022 году
RasDva
10
комментариев
0
читателей
Полный профиль
RasDva - Серпстат заблокировал пользователей из РФ без возврата денег за тарифы. Поэтому не рекомендую.
Внедрение и тестирование поиска по товарам в интернет-магазине инструментов
Геннадий IQAD.RU
1
комментарий
0
читателей
Полный профиль
Геннадий IQAD.RU - На текущий момент достаточно часто (через 2-3 фида находятся проблемы). Причина в том, что инструмент пока находится в бета-версии и фиды проходят ручную модерацию через асессоров Яндекса. Тем не менее, как правило, правки минимальны.
ТОП КОММЕНТАТОРОВ
Комментариев
910
Комментариев
834
Комментариев
554
Комментариев
540
Комментариев
483
Комментариев
385
Комментариев
373
Комментариев
262
Комментариев
249
Комментариев
171
Комментариев
156
Комментариев
141
Комментариев
121
Комментариев
115
Комментариев
97
Комментариев
97
Комментариев
97
Комментариев
96
Комментариев
80
Комментариев
77
Комментариев
74
Комментариев
67
Комментариев
62
Комментариев
60
Комментариев
59

Отправьте отзыв!
Отправьте отзыв!