×
Россия +7 (495) 139-20-33

Выявление группы потенциальных клиентов, которые с высокой вероятностью заинтересуются услугами компании

Россия +7 (495) 139-20-33
Шрифт:
0 1024

Гипотеза

Мы сделали предположение, что на основании параметров сайта + домена компании можно находить клиентов, которые с большей вероятностью заинтересуются определенным продуктом/услугами этой компании.

Проверка гипотезы

Первый этап: скачиваем все зарегистрированные домены .ru и рф. Ищем на главных страницах телефон и определяем регион по телефону. На этом же этапе отсеиваются все недоступные домены и домены без телефона. В первую очередь интересует Москва и МО. Именно среди этих доменов, будем производить отбор самых приоритетных (перспективных).

Второй этап - разметка параметров:

  • Количество проиндексированных страниц (Яндекса и Google)
  • Количество доменов и страниц, которые ссылаются на сайт
  • Раздел Яндекс каталога (если есть)
  • Количество просмотров и посетителей в день
  • Системы статистики (Яндекс Метрика, Google Analytics, Liveinternet и тд)
  • Социальная активность (количество пользователей в группе ВК, число твиттов и т.д)
  • Скорость загрузки страницы (абсолютный показатель в секундах и процент сайтов, которые медленнее нашего)
  • Количество внутренних и внешних ссылок
  • Наличие микроразметки
  • Местоположение сервера
  • Возраст домена
  • Настроен ли https и редирект www
  • Наличие sitemap и robots.txt
  • Видимость в Яндекс и Google

Все признаки размечались с помощью сервиса pr-cy.ru.

Следующим этапом была бинарная классификация:

  • те домены, по которым в нашей системе был хотя бы одна заявка, помечались как хорошие, т.е. имеющие класс 1;
  • в качестве плохих доменов, выбрали домены, по которым были неудачные попытки коммуникации с компанией.

Размеры полученных классов получились сильно разными, поэтому из нулевого класса случайно отобрали N объектов, где N- число объектов первого класса.

Обучение проводилось с помощью следующих инструментов:

  • Scikit-learn
  • XGBoost
  • CatBoost

Scikit-learn – библиотека для Python, в которое реализовано большое количество алгоритмов машинного обучения, как для задач классификации и регрессии, так и для обучения без учителя. Библиотека и имеет хорошую документацию, а также включает в себя ряд дополнительных методов, например, для оценки качества полученной модели.

XGBoost- библиотека с открытым исходным кодом, в основе которой лежит алгоритм градиентного бустинга. Широко известна среди сообщества Kaggle, где использовалась для большого количества соревнований.

CatBoost - это новая технология машинного обучения от Яндекса, особенностью которой является возможность обучать модели на разнородных данных, т.е. можно использовать категориальные признаки, без какой-либо предобработки. Отсюда и название технологии:

Cat (категориальный) + Boost (бустинг)

Категориальными называются признаки, которые могут принимать значения из конечного неупорядоченного множества. Примером может служить признак «Город», который принимает значения: Москва, Тула, Санкт-Петербург, Новгород. Классические методы машинного обучения с такими признаками работать не умеют, поэтому необходимы преобразований, например, one-hot кодирование. От этого недостатка CatBoost избавлен.

В нашей задаче категориальными являются признаки:

  • Раздел Яндекс каталога
  • Местоположение сервера
  • Системы статистики, установленные на сайте

Обучении проводилось 17 тысячах доменов. Использовалась стандартная KFold-валидация на 20 фолдах.

Результат RandomForestClassifier:

Орлов 1.png

Результат XGBClassifier:

Орлов 2.png

Результат CatBoostClassifier:

Орлов 3.png

CatBoost если и показал себя лучше, то совсем незначительно. Зато время обучения в несколько раз больше, чем у остальных классификаторов в этом эксперименте.

Классы были уравнены по количеству для обучения, но в реальности объектов из нулевого класса в 10 раз больше, поэтому нужно оценить, как полученная модель будет отрабатывать на реальном соотношении классов.

Для проверки были выбраны все данные, которые не участвовали в обучении. Полученный результат:

Орлов 4.png

Что мы получили:

Раньше, когда не было никакой фильтрации доменов, нам нужно было совершить 103 тысячи коммуникаций, из которых хороших только 8 тысяч, т.е. процент эффективности = 8168/103767=0.07

Если теперь использовать модель для выбора приоритетных доменов, т.е. будем выбирать домены с классом 1, то потребуется совершить 33242+6075 = 39317 коммуникаций, а процент эффективности будет равен 6075/39317 = 0.15 (6075 – число доменов, которые действительно являются хорошими, 39317- домены, которые классификатор определил, как хорошие), что в 2 раза выше старого варианта. Плохо то, что 2093 потенциальных клиентов будут потеряны, но если предположить, что потребуется 39 тысяч доменов в год, то через год повторяем процедуру и находим новых клиентов.

Чтобы еще улучшить результат попробуем построить регрессионную модель, а не классификатор. Тогда можно будет подобрать некоторый порог, по которому будем говорить хороший это домен или нет, таким образом, чтобы наш процент эффективности еще вырос.

XGBoost ранее показал себя оптимально и с точки зрения качества и с точки зрения скорости, поэтому дальше будем использовать его.

Порог = 0.6. Результат на всем множестве данных, не участвующих в обучении:

Орлов 5.png

В этом случае потребуется 17488+ 4722=22210 коммуникаций, а процент эффективности будет равен 4722/22210=0.21. Это выше предыдущего варианта, при этом коммуникаций требуется в 1.7 раза меньше, но и хороших доменов мы определим меньше.

Другой попыткой улучшения было внесение большего числа значений целевой переменной (вместо двух):

  1. если была заявка, целевая функция = 2
  2. если после заявки была продажа, целевая функция = 5
  3. если заявки не было, то целевая функция равна числу коммуникаций по домену со знаком минус (чем больше коммуницируем и не получаем лидов, тем менее интересен потенциальный клиент)

Качество модели получилось хуже, чем в предыдущих случаях. Вообще, в этой задаче качество низкое, но объяснить это можно достаточно просто:

  • во-первых, некоторые из доменов, которые сейчас помечены как плохие, т.е. без заявки, легко могут переходить в хороший класс, возможно там просто сейчас недостаточно коммуникаций. Это размазывает границу между классами.
  • во-вторых, доменные признаки скорее фильтрующие, т.е. если на сайте 5 страниц, нет счетчиков и сайту 3 месяца, то такой сайт нам не интересен, но, если есть домены с большим числом страниц, присутствующие в Яндекс каталоге и социально активные, то они наши потенциальные клиенты, но дальше вступают в силу другие факторы: нет ли у них уже поставщика наших услуг, устроит ли наше предложение и т.д.

Использование:

Для доменов, которые были получены на первом этапе и которые отсутствуют в нашей базе, получаем прогноз по модели. Осуществляем коммуникации по доменам, которые были отнесены к первому классу.

Результаты:

Несмотря на низкое качество полученной модели, ее использование может повысить эффективность коммуникаций почти в 2 раза, поэтому важно смотреть не только на цифры, важно искать пользу для бизнеса.

В ходе исследования было проведено знакомство с новой технологией – CatBoost, которая показала себя как достаточно хорошая по качеству, по крайней мере сопоставима с XGBoost, но очень медленная.

(Голосов: 5, Рейтинг: 5)
Читайте нас в Telegram - digital_bar

Есть о чем рассказать? Тогда присылайте свои материалы Марине Ибушевой


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
Как работать с сервисом для блогеров и бизнеса Perfluence
SergZa
1
комментарий
0
читателей
Полный профиль
SergZa - Не знал, что с небольшим количеством подписчиков можно заработать, буду пробовать;)
Алгоритм продвижения сайта через Pinterest
Марк
1
комментарий
0
читателей
Полный профиль
Марк - Виктор добрый день, подскажите, как связаться с вами через фэйсбук или ВКонтакте?
Диагностика и снятие ссылочного фильтра «Минусинск» в 2021 году. Кейс
Stanislav Romanenko
7
комментариев
0
читателей
Полный профиль
Stanislav Romanenko - Просто чисткой ссылочного можно просадить позиции в гугле, поэтому с бухты-барахты начинать удалять ссылки как-то тоже не хотелось бы. Ну в общем, если попадётся ещё подобный случай - не стесняйтесь выкладывать новый кейс :) Просто видите как мало кейсов по этому поводу, поэтому каждый на вес золота. "с этой бедой также приходится сталкиваться и пока кроме как крутить в обратную сторону ничего лучше не придумали." - на серче один товарищ скрипт антибота своего под это дело заточил searchengines.guru/ru/forum/981615/page39#unread - вроде боты пропадают, но и часть живых людей тоже :)
Как забрать 5 мест в выдаче из 10. Кейс-эксперимент
nikolay.shmichkov
4
комментария
0
читателей
Полный профиль
nikolay.shmichkov - Отличный результат!
Локальное SEO, или Как увеличить трафик стоматологии на 700% в небольшом городе
Денис Астахов
3
комментария
0
читателей
Полный профиль
Денис Астахов - В первую очередь стоит работать по конкретному гео. Это размещение ссылок, отзывов и так далее. А в остальное seo ни чем отличаться не будет. Из того что я пробовал, сервис zenlink работает по всему гео России. Можно указать как регион в целом, так и конкретный город.
Увеличение трафика новостного сайта в 2 раза с помощью SEO. Кейс
Миферрон Сенокосов
7
комментариев
0
читателей
Полный профиль
Миферрон Сенокосов - Конечно же поисковая оптимизация нужна в любом случае и текст статей должен быть уникальным. Что касается раскрутки, то рекомендую использовать крауд маркетинг, это позволит увеличить трафик, улучшить поведенческие факторы и конверсию. Я, например, для этих целей zenlink юзаю, при помощи этого сервиса размещаю ссылки и продвигаю свои сайты.
Как мы увеличили трафик из Яндекса более чем в 3 раза за неделю на сайте клиники. Кейс
Андрей
1
комментарий
0
читателей
Полный профиль
Андрей - У большинства сайтов произошел рост в Гугле в декабре и в марте Яндекса. Ваши шаманства тут не причём :)
5 книг от эксперта: Александр Алаев (АлаичЪ и Ко)
Сергей
1
комментарий
0
читателей
Полный профиль
Сергей - Богатый папа, бедный папа - сборник мифов, которые уже разоблачил все. Все сразу стало понятно про "эксперта". Дальше можно список не смотреть. Прочитать ее конечно можно, если ничего другого нет под рукой, но советовать другим, это уже извините, совсем людей не уважать.
90% специалистов выделяют бюджет на ссылки. Sape и SEOnews публикуют исследование рынка SEO
Fase Bosty
1
комментарий
0
читателей
Полный профиль
Fase Bosty - Часть рекламного бюджета тоже на ссылки трачу. Благо, что от них есть польза, поведенческие факторы повышаются. Вот только я не на биржах их покупаю, а использую сервис zenlink, ибо у них размещение ручное и на тематических площадках.
Как поступить в ситуации, когда конкурент рекламируется по вашим брендовым запросам. Кейс
Гость
41
комментарий
0
читателей
Полный профиль
Гость - поржал с Тинькофф банк и точка)))
ТОП КОММЕНТАТОРОВ
Комментариев
910
Комментариев
834
Комментариев
554
Комментариев
540
Комментариев
483
Комментариев
385
Комментариев
373
Комментариев
262
Комментариев
249
Комментариев
171
Комментариев
156
Комментариев
141
Комментариев
121
Комментариев
114
Комментариев
97
Комментариев
97
Комментариев
96
Комментариев
92
Комментариев
80
Комментариев
77
Комментариев
69
Комментариев
67
Комментариев
62
Комментариев
60
Комментариев
59

Отправьте отзыв!
Отправьте отзыв!