×
Россия +7 (495) 139-20-33

Выявление группы потенциальных клиентов, которые с высокой вероятностью заинтересуются услугами компании

Россия +7 (495) 139-20-33
Шрифт:
0 1537
Подпишитесь на нас в Telegram

Гипотеза

Мы сделали предположение, что на основании параметров сайта + домена компании можно находить клиентов, которые с большей вероятностью заинтересуются определенным продуктом/услугами этой компании.

Проверка гипотезы

Первый этап: скачиваем все зарегистрированные домены .ru и рф. Ищем на главных страницах телефон и определяем регион по телефону. На этом же этапе отсеиваются все недоступные домены и домены без телефона. В первую очередь интересует Москва и МО. Именно среди этих доменов, будем производить отбор самых приоритетных (перспективных).

Второй этап - разметка параметров:

  • Количество проиндексированных страниц (Яндекса и Google)
  • Количество доменов и страниц, которые ссылаются на сайт
  • Раздел Яндекс каталога (если есть)
  • Количество просмотров и посетителей в день
  • Системы статистики (Яндекс Метрика, Google Analytics, Liveinternet и тд)
  • Социальная активность (количество пользователей в группе ВК, число твиттов и т.д)
  • Скорость загрузки страницы (абсолютный показатель в секундах и процент сайтов, которые медленнее нашего)
  • Количество внутренних и внешних ссылок
  • Наличие микроразметки
  • Местоположение сервера
  • Возраст домена
  • Настроен ли https и редирект www
  • Наличие sitemap и robots.txt
  • Видимость в Яндекс и Google

Все признаки размечались с помощью сервиса pr-cy.ru.

Следующим этапом была бинарная классификация:

  • те домены, по которым в нашей системе был хотя бы одна заявка, помечались как хорошие, т.е. имеющие класс 1;
  • в качестве плохих доменов, выбрали домены, по которым были неудачные попытки коммуникации с компанией.

Размеры полученных классов получились сильно разными, поэтому из нулевого класса случайно отобрали N объектов, где N- число объектов первого класса.

Обучение проводилось с помощью следующих инструментов:

  • Scikit-learn
  • XGBoost
  • CatBoost

Scikit-learn – библиотека для Python, в которое реализовано большое количество алгоритмов машинного обучения, как для задач классификации и регрессии, так и для обучения без учителя. Библиотека и имеет хорошую документацию, а также включает в себя ряд дополнительных методов, например, для оценки качества полученной модели.

XGBoost- библиотека с открытым исходным кодом, в основе которой лежит алгоритм градиентного бустинга. Широко известна среди сообщества Kaggle, где использовалась для большого количества соревнований.

CatBoost - это новая технология машинного обучения от Яндекса, особенностью которой является возможность обучать модели на разнородных данных, т.е. можно использовать категориальные признаки, без какой-либо предобработки. Отсюда и название технологии:

Cat (категориальный) + Boost (бустинг)

Категориальными называются признаки, которые могут принимать значения из конечного неупорядоченного множества. Примером может служить признак «Город», который принимает значения: Москва, Тула, Санкт-Петербург, Новгород. Классические методы машинного обучения с такими признаками работать не умеют, поэтому необходимы преобразований, например, one-hot кодирование. От этого недостатка CatBoost избавлен.

В нашей задаче категориальными являются признаки:

  • Раздел Яндекс каталога
  • Местоположение сервера
  • Системы статистики, установленные на сайте

Обучении проводилось 17 тысячах доменов. Использовалась стандартная KFold-валидация на 20 фолдах.

Результат RandomForestClassifier:

Орлов 1.png

Результат XGBClassifier:

Орлов 2.png

Результат CatBoostClassifier:

Орлов 3.png

CatBoost если и показал себя лучше, то совсем незначительно. Зато время обучения в несколько раз больше, чем у остальных классификаторов в этом эксперименте.

Классы были уравнены по количеству для обучения, но в реальности объектов из нулевого класса в 10 раз больше, поэтому нужно оценить, как полученная модель будет отрабатывать на реальном соотношении классов.

Для проверки были выбраны все данные, которые не участвовали в обучении. Полученный результат:

Орлов 4.png

Что мы получили:

Раньше, когда не было никакой фильтрации доменов, нам нужно было совершить 103 тысячи коммуникаций, из которых хороших только 8 тысяч, т.е. процент эффективности = 8168/103767=0.07

Если теперь использовать модель для выбора приоритетных доменов, т.е. будем выбирать домены с классом 1, то потребуется совершить 33242+6075 = 39317 коммуникаций, а процент эффективности будет равен 6075/39317 = 0.15 (6075 – число доменов, которые действительно являются хорошими, 39317- домены, которые классификатор определил, как хорошие), что в 2 раза выше старого варианта. Плохо то, что 2093 потенциальных клиентов будут потеряны, но если предположить, что потребуется 39 тысяч доменов в год, то через год повторяем процедуру и находим новых клиентов.

Чтобы еще улучшить результат попробуем построить регрессионную модель, а не классификатор. Тогда можно будет подобрать некоторый порог, по которому будем говорить хороший это домен или нет, таким образом, чтобы наш процент эффективности еще вырос.

XGBoost ранее показал себя оптимально и с точки зрения качества и с точки зрения скорости, поэтому дальше будем использовать его.

Порог = 0.6. Результат на всем множестве данных, не участвующих в обучении:

Орлов 5.png

В этом случае потребуется 17488+ 4722=22210 коммуникаций, а процент эффективности будет равен 4722/22210=0.21. Это выше предыдущего варианта, при этом коммуникаций требуется в 1.7 раза меньше, но и хороших доменов мы определим меньше.

Другой попыткой улучшения было внесение большего числа значений целевой переменной (вместо двух):

  1. если была заявка, целевая функция = 2
  2. если после заявки была продажа, целевая функция = 5
  3. если заявки не было, то целевая функция равна числу коммуникаций по домену со знаком минус (чем больше коммуницируем и не получаем лидов, тем менее интересен потенциальный клиент)

Качество модели получилось хуже, чем в предыдущих случаях. Вообще, в этой задаче качество низкое, но объяснить это можно достаточно просто:

  • во-первых, некоторые из доменов, которые сейчас помечены как плохие, т.е. без заявки, легко могут переходить в хороший класс, возможно там просто сейчас недостаточно коммуникаций. Это размазывает границу между классами.
  • во-вторых, доменные признаки скорее фильтрующие, т.е. если на сайте 5 страниц, нет счетчиков и сайту 3 месяца, то такой сайт нам не интересен, но, если есть домены с большим числом страниц, присутствующие в Яндекс каталоге и социально активные, то они наши потенциальные клиенты, но дальше вступают в силу другие факторы: нет ли у них уже поставщика наших услуг, устроит ли наше предложение и т.д.

Использование:

Для доменов, которые были получены на первом этапе и которые отсутствуют в нашей базе, получаем прогноз по модели. Осуществляем коммуникации по доменам, которые были отнесены к первому классу.

Результаты:

Несмотря на низкое качество полученной модели, ее использование может повысить эффективность коммуникаций почти в 2 раза, поэтому важно смотреть не только на цифры, важно искать пользу для бизнеса.

В ходе исследования было проведено знакомство с новой технологией – CatBoost, которая показала себя как достаточно хорошая по качеству, по крайней мере сопоставима с XGBoost, но очень медленная.

Друзья, теперь вы можете поддержать SEOnews https://pay.cloudtips.ru/p/8828f772
Ваши донаты помогут нам развивать издание и дальше радовать вас полезным контентом.

Есть о чем рассказать? Тогда присылайте свои материалы Марине Ибушевой


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
Альманах фатальных ошибок b2b-сайта: как владельцы бизнеса обрекают сайты на бесславное существование. Часть первая
Сергей Ерофеев
3
комментария
0
читателей
Полный профиль
Сергей Ерофеев - Спасибо за комментарий! Вы правы, если за CMS следит заинтересованный профессионал - риски минимальны. Но мы же с вами понимаем, что: а) Не каждый разработчик делает все, как "для себя". б) После создания сайта разработчик редко остается на проекте в) Часто разработчик не является маркетологом. В этом случае принцип "функционал работает и этого достаточно" может быть на первом месте. Мы тоже видели большое количество хороших и качественных проектов на бесплатных CMS, но проблемных проектов мы видели сильно больше. Просто статистика.
Белые и серые методы продвижения. Тренды 2023
sarges
2
комментария
0
читателей
Полный профиль
sarges - Нужно учитывать и тот факт, что со временем методы продвижения меняются и необходимо подстраиваться под новые реалии. Посоветую заглянуть на zenlink.ru/blog/kak-izmenilsja-internet-marketing-za-10-let и почитать статью, там рассказывается о том, как изменился интернет-маркетинг за последние 10 лет, какие сейчас тенденции и какие прогнозы в этой сфере.
Почему сайтам нужно переезжать с конструкторов на полноценные CMS
Seodm.ru
3
комментария
0
читателей
Полный профиль
Seodm.ru - Ааа по мне, сам seo специалист, вероятность внедрения необходимого контента на тильда того же блока этапом работы или преимуществ, намного выше чем на движке. А что тильда что движок малый бизнес норм продвигается особо супер разработки не требуется
Как автоматизировать мессенджеры для бизнеса в CRM-системе
Алиналина
1
комментарий
0
читателей
Полный профиль
Алиналина - Кстати да. Но мы зарегались, CRMка реально интересная
Как мы увеличили для клиента трафик из поиска в 7 раз. Кейс
Кирилл Половников
2
комментария
0
читателей
Полный профиль
Кирилл Половников - Оба этих статуса (редирект и малополезная) преобладали в качестве проблем с индексацией. Помогла работа с .htaccess (в нем были ошибки и его чистили), работа над корректировкой редиректов, каноникалами и прочими техническими ошибками. Нельзя сказать, что только редиректы были ключевым препятствием.
Как показывать рекламу посетителям сайтов конкурентов
Павел
2
комментария
0
читателей
Полный профиль
Павел - Спасибо за комментарий. Гипотеза была в том, что с указанными счетчиками конкурентов показы будут не просто похожей аудитории их сайтов (как при рекламе по доменам), а именно на аудиторию которую Яндекс для себя разметил как целевая дл сайтов конкурентов. Важно, это гипотеза. А про белые нитки, как говорится, доверяй, но проверяй))
Кейс MediaNation: увеличили еженедельный трафик автомобильной компании на 50% за год и вышли в топ поиска по 300 запросам
Игорь Скляр
1
комментарий
0
читателей
Полный профиль
Игорь Скляр - Действительно, изначально рост был именно по информационным запросам. Но рост позиций и трафика по информационным запросам положительно повлиял и на связанные позиции по коммерческим запросам и сдвинул видимость с мёртвой точки
Чек-лист: как настроить рекламу в Яндекс Директе и избежать ошибок
Сергей Ильин
2
комментария
0
читателей
Полный профиль
Сергей Ильин - я ваще не туда написал
Как дожать сайт до ТОПа? Выжимаем весь сок из SEO под Яндекс и Google
Фанит
2
комментария
0
читателей
Полный профиль
Фанит - Спасибо автору за статью, полезно! По поводу сниппета сайта, для увеличения CTR можно дополнительно внедрить основные схемы микроразметки и улучшить его, чтобы выделялся на фоне конкурентов, особенно заметно в Google.
Можно ли продвигать сайт спонсорскими ссылками: разбор кейса
Александр
1
комментарий
0
читателей
Полный профиль
Александр - Хм.... ооочень сомнительный результат. За 10 000 в месяц получить 1 запрос в топ10, да ещё и в google, который на ссылки всегда лучше Яндекса реагировал - такое себе.... При этом достаточно странно были отобраны запросы с местами за ТОП50. Ведь давно известно же, что ссылки так быстро не сработают, к тому же за такое короткое время максимально, на что можно рассчитывать - это небольшое повышение средней. Поэтому тут логично было бы подобрать запросы, либо те, которые находятся близко к ТОП10, например на 11-15 местах, и посмотреть на их динамику. Либо на запросы, которые уже в топ10 находятся (5-10 места). Ведь после отключения контекста CTR в google кратно вырос и, например, разница 1 и 2-х местах отличается почти в два раза! Поэтому, если бы ссылки сработали на рост позиций с 5-10 мест, на 1-4 - это был бы кратный толк как в росте трафика, так и с точки зрения отдачи от вложений. Тем более как раз подвижки в 2-3 позиции уже дали бы ощутимый результат (если это, конечно не НЧ и микроНЧ запросы).... Так что считаю, эксперимент изначально был провальным уже на этапе отбора запросов.
ТОП КОММЕНТАТОРОВ
Комментариев
910
Комментариев
834
Комментариев
554
Комментариев
540
Комментариев
483
Комментариев
385
Комментариев
373
Комментариев
262
Комментариев
249
Комментариев
171
Комментариев
156
Комментариев
141
Комментариев
121
Комментариев
116
Комментариев
100
Комментариев
97
Комментариев
97
Комментариев
96
Комментариев
80
Комментариев
77
Комментариев
74
Комментариев
67
Комментариев
64
Комментариев
60
Комментариев
59

Отправьте отзыв!
Отправьте отзыв!