×

Интеллект искусственный, монетизация сайта – настоящая

Россия +7 (495) 139-20-33
Шрифт:
0 1047

Очевидно, что интуиция, опыт и ручной труд уже не справляются с обработкой потока информации, а искусственный интеллект заменяет врачей, водителей, журналистов, аналитиков, менеджеров, маркетологов… В последние несколько лет фраза «машинное обучение» перестала быть просто модным словосочетанием, оно рядом с нами ежедневно: технология распознавания лиц позволяет отмечать и обмениваться фотографиями друзей, системы рекомендаций предлагают фильмы, книги или телешоу в соответствии с нашими интересами, выбирают для нас такси и рестораны.   

В статье расскажем, что такое искусственный интеллект и машинное обучение и как использовать эти технологии для работы и заработка. 

1. Как работает машинное обучение 

Машинное обучение (англ. machine learning, ML) – один из разделов искусственного интеллекта (ИИ). Это методика анализа данных, благодаря которой программист может не писать инструкции, предусматривая все потенциальные проблемы и их решения. Вместо этого он закладывает в компьютер или программу алгоритм самостоятельного поиска закономерностей в массиве информации, составления на их основе прогнозов и вывода решения. И все это, повторимся, без участия человека. 

Если упростить, то это алгоритмы, которые позволяют машине/ роботу/ аналитической системе самостоятельно обучаться. 

Возьмем, к примеру, сервис DeepCode. Оперируя четвертью миллиона алгоритмических правил, принципов и методов разработки ПО, он анализирует программный код сайта на предмет ошибок и формирует рекомендации для разработчиков по исправлению. Причем программа самостоятельно и постоянно пополняет число алгоритмов в своей аналитической базе – именно за счет ML-технологий.  

Примеров использования машинного обучения масса: 

  • системы прогнозирования,  
  • распознавание речи: перевод произнесенных слов в текст, а текста – в речь (голосовой поиск, пользовательские интерфейсы),
  • финансы, промышленность и торговля: компании используют ML при расследовании фактов мошенничества и проверках кредитоспособности;
  • интернет-реклама: управление ставками в платных каналах, системы аналитики, персонализации контента и многое, многое другое. 

В основе платформы RTBSape также лежит machine learning. Однако у тех, кто зарабатывает в интернете, нет спроса на интересные технологии ради самих технологий. Каждого вебмастера интересует превращение данных в деньги. Об этом и поговорим далее: каким образом Data Science приносит реальный доход. 

2. Искусственный интеллект и монетизация сайта: прослеживаем связи 

В начале всё выглядит довольно просто. Есть сайт, а у сайта – страницы, контент в определенной тематике и трафик, то есть пользователи, который этот контент потребляют. А еще вместе с контентом они потребляют рекламу, у которой есть определенный формат, размер и место на странице. При этом у каждого посетителя есть cookie, IP-адрес, заголовки, передаваемые браузером, дата посещения. 

А еще есть рекламные сети. У каждой имеется история покупки на конкретном рекламном месте сайта, информация о посетителе, у кого была совершена покупка, какой процент трафика они покупали, по какой цене. 

Чтобы продать и купить рекламу на лучших условиях, необходимо отследить, проанализировать и связать воедино весь этот массив информации. Но сделать это вручную почти невозможно. Кое-что, конечно, человек может сделать своими силами, но результаты будут неполными и приблизительными. А самое главное, такая работа крайне неэффективна. И уж совсем бесполезна, если в партнерах у вебмастера не одна рекламная сеть.   

Если имеешь дело с Big Data, лучше положиться на искусственный интеллект: посмотрите, как с этим справляются наши технологии.   

3. Большие данные в RTBSape 

В RTBSape более 30 партнеров – рекламных сетей. Для каждого рекламного места необходимо выстроить последовательность их вызова, но вариантов таких последовательностей бесчисленное множество – настроить их вручную немыслимо. Здесь к процессу подключается машинное обучение и нейроалгоритмы. 

Как подбираем партнеров 

Для предсказания спроса на рекламное место RTBSape собирает все события (показы, просмотры на сайте). На основе их параметров принимается решение и запускается алгоритм, который и подбирает для вебмастера партнеров, максимально выгодных здесь и сейчас.  

Раз в час наша технология пересматривает порядок показа партнеров на основе цены за показ (CPM). Алгоритмы предсказывают спрос у партнера на конкретные характеристики (площадку, профиль посетителей и т.д) сайта и подбирают наиболее выгодных для паблишера рекламодателей. Алгоритмы работают таким образом, что сначала подбираются наиболее выгодные партнеры, а далее – в порядке убывания их ценности.  

Таким образом на вход нашего нейроалгоритма для каждого рекламного места подается статистика обработки как можно большего числа последовательностей вызова партнеров. 

Как это работает: 

Вход: для 80% показов рекламы в рамках рекламного места на странице алгоритм использует последовательность по умолчанию (дефолтную). На 20% тестирует другие варианты последовательностей. Результаты всех этих сочетаний сервис обрабатывает в нейросети, добавляя туда дополнительно факторы конкретного посетителя, сайта, страницы и места. 

Выход: по результатам тестирования алгоритм выбирает наиболее выгодную последовательность и отдает ей 80% показов в рамках одного рекламного места до тех пор, пока тестовые 20% не дадут новую максимально эффективную вариацию.  

В RTBSape более 30  партнеров

Перед продажей рекламного места сервис проводит открытый аукцион на рекламное место среди сетей-партнеров – Оpen RTB, тем самым максимизируя цену показа. Если в ходе аукциона выкупа не было, программа продает трафик остальным партнерам – в порядке убывания их значимости. 

Для каждого аукциона места для рекламных форматов ранжируются по цене. При этом, чтобы увеличить доход вебмастера, система проводит аукцион среди всех подходящих форматов и показывает наиболее выгодные для вебмастера. 

Вот несколько примеров: 

  • в рамках одного места система продает не только рекламу для стандартного размера блока (например 160x600), но и всех размеров, которые в него помещаются, например 120x600, тем самым увеличивая выкуп в среднем более чем на 30%; 
  • если возникает спрос на размещение видео этого размера, то RTBSape сможет показать и его, увеличив стоимость показа до 5 раз (размещение видеорекламы дороже, чем баннерной); 
  • в рамках одного рекламного места система может запустить цепочки из 4–5 коротких видео, что в сумме будет выгоднее одного длинного ролика; 
  • в одном и том же рекламном блоке мы можем показывать одновременно несколько креативов. Например, имеется блок 970x250. Одновременно пришли запросы на 1 креатив 970x250 по 15 рублей CPM и 3 креатива 300x250 по 10 рублей CPM. Система покажет в блоке то, что выгоднее: 3 креатива, которые дадут в сумме 30 рублей CPM вместо 15 рублей, показывая одновременно несколько креативов в рамках одного рекламного места.  

Вебмастер может отключить вручную какие-то опции, но в целом все происходит автоматически, без человеческого вмешательства. Чтобы повторить такую операцию вручную потребуется масса времени, а найти оптимальную последовательность без автоматизации невозможно, поскольку невозможно вручную учесть все вариации сочетания влияющих факторов. 

Технологии big data и кластеры 

Несмотря на всю сложность технологии, в сервисе – минимальная команда разработчиков для внутреннего контроля, так как все автоматизировано. 

BigData RTBSape хранятся в hadoop – это основополагающая технология хранения и обработки больших данных (Big Data). 

Аналитика – в СlickНouse, колоночной базе данных, разработанной Яндексом для обработки аналитических запросов, которая идеально подходит для решения задач интернет-маркетинга. 

Также используется Apache Spark – целостная вычислительная система с набором библиотек для параллельной обработки данных на кластерах компьютеров. 

А еще в RTBSape используются методы линейной регрессии – LightGBM (библиотека машинного обучения), или градиентный бустинг. Это фреймворк для повышения градиента, который использует древовидные алгоритмы обучения.  

Что в результате? 

Мы собираем много данных в кластерах, ищем закономерности в выкупе от рекламных партнеров, чтобы определить наиболее выгодных и предоставляем вебмастеру готовое, эффективное и постоянно актуальное решение, чтобы он получал максимально возможный доход.  

В среднем, по сравнению со статической последовательностью партнеров, алгоритм RTBSape показывает увеличение дохода более чем на 30 процентов. 

Если пользуетесь другими решениями, мы готовы показать и доказать нашу эффективность в сравнении с ними. Регистрируйтесь в RTBSape или обращайтесь на почту и почувствуйте разницу.  

Сергей Самонин, CEO RTBSape

(Голосов: 9, Рейтинг: 5)
0
0

Есть о чем рассказать? Тогда присылайте свои материалы в редакцию.


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
Кейс: как за 30 дней вывести новый сайт в ТОП выдачи Google
Сергей
2
комментария
0
читателей
Полный профиль
Сергей - Прошёл у Паши курс год назад, пытался продвигать свой сайт portativ.org.ua, но особых продвижений нет. Наверное сео уже умерло??
Как стандартизировать данные семантики с помощью логарифмов
Юлий
1
комментарий
0
читателей
Полный профиль
Юлий - Чем снималась коммерцелизация?
Облако тегов в интернет-магазине: прикладная инструкция по увеличению трафика
Юлия Дмитриева
2
комментария
0
читателей
Полный профиль
Юлия Дмитриева - Согласна с вами, что в любом деле важен индивидуальный подход:)
Специалисты в Рунете заметили глобальную накрутку поведенческих факторов
Дмитрий Кулаевский
1
комментарий
0
читателей
Полный профиль
Дмитрий Кулаевский - кто-нибудь знает как с этим бороться? очень много такого трафа идёт с июля, сайт сильно просел
Яндекс возобновил «показательные порки» за накрутку поведенческих факторов
Антон
1
комментарий
0
читателей
Полный профиль
Антон - Никакой не выпал. Кроме клиентского сайта, который проседал из-за скрутки, о чем Я.Поиску сообщали и клиенту тоже. Ноль реакции от поисковика (продолжайте развивать сайт, никаких проблем нет ...). Клиенту надоело и он заказал накрутку у подрядчиков. Мы искренне ждали бана, сообщали об этом клиенту, т.к. мы все таки делаем все остальное для развития. Как итог: с лета полет нормальный. Сайт растет, никаких проблем. Случайно даже стажер палил тех поддержке факт использования накрутки. И ничего. Сайт растет дальше. Если они не могут ничего принять даже после признания факта накрутки, что они могут сделать с жалобами на накрутку конкурентов?! Никогда не одобряли данные методы, но ... похоже ... все работает :)
Михаил Ляшенко (PostMarket): о рынке инфлюенс-маркетинга и рекламе у блогеров
Григорий Романченко
1
комментарий
0
читателей
Полный профиль
Григорий Романченко - Неудивительно, что все хвалят PostMarket, это действительно достойный сервис, недавно стали через них продвигать свой продукт, результаты есть, продажи выросли на 40% и это только начало.
«Нет в наличии»: что делать с карточками отсутствующего товара
freyr energy
1
комментарий
0
читателей
Полный профиль
freyr energy - Thank you so much @ admin for share your valuable thoughts and ideas We always enjoy your articles its inspired a lot by reading your articles day by day. So please accept my thanks and congrats for success of your latest series. We hope, you should published more better articles like ever before solar rooftop
15 языков программирования, за знание которых платят выше среднего
Любомир
2
комментария
0
читателей
Полный профиль
Любомир - Ну и ЗП: ни слова о том что она варируеться от 0 до 100 000$ в год!!! Что до высокой зп надо несколько лет етим заниматся! Что 100 000$ в год на западе заробатывают, а где нибудь в азиатских страннах 100$ в год. В СНГ первые годы в разработчика ЗП как в грузчика на складе - это где то 4-5 тыс. долларов в год, и уже имея несколько лет опыта возможно дойти до 10-20 тыс. долларов в год! Почему нет конкретики? Меня лично нервирует то что людям внушают великие ЗП в АйТи, а люди тупые и ведутся!!!!
Сколько стоит SEO на фрилансе. Кейсы
Людмила
1
комментарий
0
читателей
Полный профиль
Людмила - Очень спорная статья. Особенно оценка. К примеру, за 1500 руб. 200 вечных ссылок с быстрой индексацией. Это про какой год? Про 2020? Точно? Собственно, в текущих реалиях при хорошем раскладе за эти деньги можно получить 3-4 качественные ссылки. А никак не 200. Если 200, то такие ссылки, по 7,5 руб. за штуку выбьют сайт за ТОП-100. А заказчик будет в шоке, он же все правильно делал, по инструкции из статьи в уважаемом издании.
Яндекс тестирует оценки сайта в сниппете
Сергей Демин
8
комментариев
0
читателей
Полный профиль
Сергей Демин - вопрос такой: где получить оценку о сайте? а не об организации
ТОП КОММЕНТАТОРОВ
Комментариев
910
Комментариев
834
Комментариев
554
Комментариев
540
Комментариев
483
Комментариев
384
Комментариев
373
Комментариев
262
Комментариев
249
Комментариев
171
Комментариев
156
Комментариев
141
Комментариев
121
Комментариев
113
Комментариев
97
Комментариев
97
Комментариев
96
Комментариев
92
Комментариев
80
Комментариев
77
Комментариев
67
Комментариев
60
Комментариев
60
Комментариев
59
Комментариев
57

Отправьте отзыв!
Отправьте отзыв!