×

Как поисковые системы нас понимают. Семантический анализ текста

Россия +7 (495) 139-20-33
Шрифт:
3 2620

Семантический или смысловой анализ текста – одна из ключевых проблем как теории создания систем искусственного интеллекта, относящаяся к обработке естественного языка (Natural Language Processsing, NLP), так и компьютерной лингвистики. Результаты семантического анализа могут применяться для решения задач в таких областях, как психиатрия, политология, торговля, филология, поисковые системы, системы автоматического перевода и т.д.

Несмотря на свою востребованность практически во всех областях жизни человека, семантический анализ является одной из сложнейших математических задач. Вся сложность заключается в том, чтобы «научить» компьютер правильно трактовать образы, которые пытается передать автор текста.

В этой статье мы разберем, как поисковые системы извлекают из запроса его семантическое значение, метод TF-IDF и закон Ципфа. В первой части статьи вы можете узнать про основной способ обработки языка Bag-of-words, как поисковая система понимает отдельные слова и предложения и находит соответствующий документ. Читайте и становитесь настоящим гуру поисковой оптимизации.

TF-IDF и закон Ципфа

TF-IDF и закон Ципфа

Проверка по закону Ципфа – это метод распределения частоты слов естественного языка: если все слова языка (или просто достаточно длинного текста) упорядочить по убыванию частоты их использования, то частота n-го слова в таком списке окажется приблизительно обратно пропорциональной его порядковому номеру n (так называемому рангу этого слова). Например, второе по используемости слово встречается примерно в два раза реже, чем первое, третье – в три раза реже, чем первое, и так далее. Наиболее часто используемые 18% слов (приблизительно) составляют более 80% объема всего текста.

Самые популярные слова будут отображаться в большинстве документов. В результате такие слова усложняют подбор текстов, представленных с помощью модели мешка слов. Кроме того, самые популярные слова часто являются функциональными словами без смыслового значения. Они не несут в себе смысл текста.

10 самых популярных слов в русском языке:

1. и

2. в

3. не

4. на

5. я

6. быть

7. он

8. с

9. что

10. а

Мы можем применить статистическую меру TF-IDF (частота слова – обратная частота документа), чтобы уменьшить вес слов, которые часто используются в тексте и не несут в себе смысловой нагрузки. Показатель TF-IDF рассчитывается по следующей формуле:

Показатель TF-IDF

  • tfi,j – частота слова в тексте,
  • dfj – количество документов, содержащих текст с данным словом,
  • N – общее количество документов.

В таблице ниже приведены значения IDF для некоторых слов в пьесах Шекспира, начиная от самых информативных слов, которые встречаются только в одной пьесе (например, «Ромео»), до тех, которые настолько распространены, что они полностью не дискриминационные, поскольку встречаются во всех 37 пьесах. Такие как «хороший» или «сладкий».
IDF самых распространенных слов равен 0, в результате их частоты в модели мешка слов также будут равны 0. Частоты редких слов будут наоборот увеличены.

Слово

DF

IDF

Ромео

1

1,57

салат

2

1,27

Фальстаф

4

0,967

лес

12

0,489

боевой

21

0,074

дурачить

36

0,012

хорошо

37

0

милая

37

0

Что нужно знать SEO-специалисту

  • Маловероятно, что модель мешка слов используется в настоящее время в коммерческих поисковых системах. Существуют модели, которые лучше отражают структуру текста и учитывают больше лингвистических особенностей, но основная идея остается неизменной. Документы и поисковые запросы преобразуются в векторы, а сходство или расстояние между векторами используется в качестве меры релевантности.
  • Эта модель дает понимание, как работает лексический поиск в отличии от семантического поиска. Для лексического поиска важно, чтобы документ содержал слова, упомянутые в поисковом запросе. Для семантического поиска это пока необязательно.
  • Закон Ципфа показывает, что в тексте, написанном на естественном языке, существуют предсказуемые пропорции. Отклонения от типичных пропорций легко выявить. Таким образом не сложно определить чрезмерно оптимизированный текст, который является «неестественным».
  • Благодаря применению TF-IDF, документы, содержащие в себе ключевые слова, приобретают больший вес в векторе поиска. Очень заманчиво интерпретировать это явление как нечто, связанное с «семантикой».

Текстовый анализ сайта

Семантические слова

Семантический поиск стал ключевым словом в SEO сообществе с 2013 года. Семантический поиск — это поиск со смыслом, в отличие от лексического поиска, где поисковая система ищет буквальные совпадения слов или вариантов запроса, не понимая общего значения запроса.

Приведем простой пример. Вводим запрос в Яндекс или Google – пьяный на новый год перепутал квартиру фильм. Результаты выдачи можете увидеть на фото.

Выдача Google

Вы же сразу поняли, о каком фильме идет речь? Как мы видим, поисковая система отлично справилась с задачей. Несмотря на то, что в нашем запросе нет слов ирония / судьба / с легким паром, в выдаче мы видим «Иронию судьбы».

Но как поисковая система может понять значение слова или смысл поискового запроса? Или как мы должны указать значение слова, чтобы компьютерная программа могла понять и практически использовать его в выдаче документов?
Ключевой концепцией, которая помогает ответить на эти вопросы, является дистрибутивный анализ. Она была впервые сформулирована еще в 1950-х годах. Лингвисты заметили, что слова с похожим значением имеют тенденцию встречаться в одной и той же среде (то есть рядом с одними и теми же словами), причем количество различий в значении между двумя словами примерно соответствует разнице в их LSI-фразе.

Вот простой пример. Допустим, вы сталкиваетесь со следующими предложениями, при этом не зная, что такое лангустин:

  • Лангустины считаются деликатесом.
  • У лангустинов белое мясо в хвосте и на теле, сочное, слегка сладкое и постное.
  • При выборе лангустинов мы обращаем внимание на полупрозрачный оранжевый цвет.

Также вы определенно сталкиваетесь со следующим, так как большинство читателей знают, что такое креветка:

  • Креветки – это лакомство, которое хорошо сочетается с белым вином и соусом.
  • Нежное мясо креветки можно добавить к пасте.
  • При варке креветки меняют свой цвет на красный.

Тот факт, что лангустин встречается с такими словами, как деликатес, мясо и макароны, может указывать на то, что он является своего рода съедобным ракообразным, в чем-то похожим на креветок. Таким образом, можно определить слово по среде, в которой оно встречается и по множеству контекстов.

Как мы можем преобразовать эти наблюдения в нечто значимое для компьютерной программы? Можно построить модель, похожую на мешок слов. Однако вместо документов мы обозначим столбцы с помощью слов. Достаточно распространено использование небольших фраз в контексте целевого слова, но не более четырех слов. В этом случае каждая ячейка в модели обозначает количество, сколько раз слово встречается в контекстной фразе (например, плюс-минус четыре слова). Давайте рассмотрим эти контекстные фразы. В таблице ниже пример из книги Даниэля Джурафски и Джеймса Мартина «Обработка речи и языка».

Контекст

Ключевое слово

Контекст

сахар, нарезанный лимон, столовая ложка

абрикос

варенье, щепотка каждого из

их удовольствие. Она осторожно взяла пробу

ананас

и другой фрукт, вкус которого она сравнила

хорошо подходит для программирования на цифровом

компьютер

В поиске оптимальной R-стадии политики из

с целью сбора данных и

информация

необходимо для исследования, разрешенного в

Для каждого слова в соседних колонках мы указываем тематические слова из текста, где оно используется. В результате получаем матрицу совпадения слов. Обратите внимание, что «цифровые» и «информационные» контекстные слова больше похожи друг на друга, чем на «абрикосовые». Количество слов может быть заменено другими показателями. Например, показатель взаимной информации.

трубкозуб

...

компьютер

данные

зажимать

результат

сахар

...

абрикос

0

...

0

0

1

0

1

...

ананас

0

...

0

0

1

0

1

...

цифровой

0

...

2

1

0

1

0

...

информация

0

...

1

6

0

4

0

...

Каждое слово и его семантическое значение представлены вектором. Семантические свойства каждого слова определяются его соседями, то есть типичными контекстами, в которых оно встречается. Такая модель может легко уловить синонимию и родственность слов. Векторы двух одинаковых слов будут проходить рядом. Векторы слов, которые появляются в одном и том же тематическом поле, будут образовывать кластеры.

Слова и их векторы

В семантическом поиске нет магии. Концептуальное различие заключается в том, что слова представляются в виде векторных вложений, а не лексических элементов.

Написание текстов для сайта

Что нужно знать SEO-специалисту

  • Семантические модели хорошо подходят для охвата синонимов, связанных слов и семантических фреймов. Система связанных фреймов может образовывать семантическую сеть. Семантическая сеть – это набор слов, которые обозначают объекты предметной области и задают отношения между ними. Например, семантическая сеть чая «Золотая чаша» может включать в себя традицию, чай, чашку, чайник, ложку, сахар, напиток и т.д.
  • При создании нового контента будет полезно подумать о семантических фреймах. Т.е. учитывать семантическую структуру, по которой вы хотите продвигать вашу страницу в ТОП, а не конкретное ключевое слово.
  • Игра с контентом, скорее всего, мало что даст. Синонимичные слова, такие как квартира и апартаменты, будут иметь очень похожие векторы. При замене слов в тексте на слова синонимы мы получим текст, который будет близок к исходному варианту с точки зрения поисковой системы.
  • Поисковые системы стали гораздо лучше находить нужную информацию, но не будет лишним давать им подсказки, используя структурированную разметку данных.

Компьютерная лингвистика – это увлекательная и быстро развивающаяся наука. Концепции, представленные в этой статье, не новы и не революционны. Однако они довольно просты и помогают получить общее представление о проблемном поле.

Оригинал

(Голосов: 2, Рейтинг: 5)
0
0

Есть о чем рассказать? Тогда присылайте свои материалы в редакцию.


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
  • dotaidi
    89
    комментариев
    0
    читателей
    dotaidi
    6 месяцев назад
    Бодались две системы, цифровая и семантическая...Когда машина научится всем тонкостям семасиологии, она превратится в человека.
    -
    0
    +
    Ответить
  • Виталий Климин
    4
    комментария
    0
    читателей
    Виталий Климин
    6 месяцев назад
    Ну так-то большее значение имеет алгоритм BM25 и его модификации.
    -
    0
    +
    Ответить
    • Виталий Климин
      4
      комментария
      0
      читателей
      Виталий Климин
      6 месяцев назад
      Никто не отменял простую текстовую релевантность текста, тайтла, основанную на частотах. В тексте обязан быть кворум слов из запроса. Контролируется машинносгенерированность текста на основе анализа длин предложений.
      -
      0
      +
      Ответить
ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
«Юзабилити-лаборатория»: оставляйте заявку на участие!
Анна Макарова
381
комментарий
0
читателей
Полный профиль
Анна Макарова - Антон, добрый день! Ваш сайт не попал в основную выборку для юзабилити-анализа, но эксперты постараются сделать по вашему сайту видеоразбор (ю-ревью). Будем держать вас в курсе )
Тест по SEO – проверь свой уровень знаний
Артем Дорофеев
8
комментариев
0
читателей
Полный профиль
Артем Дорофеев - Полный текст вопроса со скриншотом панели прикладываю. Итого, что имеем: - на скриншоте отмечено, что это фильтр МПК - сайт коммерческий - рекламы на сайте нет С вероятностью 95% это ошибка (которая уже дважды случалась в Яндексе), когда они случайно "закосили" неповинные сайты. Тогда по запросу Платону фильтр быстренько снимали. Но вопрос даже не на знание этого нюанса. В любой непонятной ситуации, прежде чем что-либо предпринимать (особенно переписывать весь контент на сайте или менять дизайн, как указано в других вариантах) - фильтр следует подтвердить. Правильный ответ: "Написать письмо в техподдержку Яндекса".
Кейс: как за 30 дней вывести новый сайт в ТОП выдачи Google
Сергей
2
комментария
0
читателей
Полный профиль
Сергей - Прошёл у Паши курс год назад, пытался продвигать свой сайт portativ.org.ua, но особых продвижений нет. Наверное сео уже умерло??
Выбираем CMS для сайта с точки зрения SEO: базовые требования
SEO.RU
6
комментариев
0
читателей
Полный профиль
SEO.RU - Спасибо за замечание, действительно была допущена неточность - возможно информация была не так давно обновилась. Данные в статье поправим на актуальные.
100+ ресурсов по SEO для изучения поисковой оптимизации с нуля
Марина Ибушева
0
комментариев
0
читателей
Полный профиль
Марина Ибушева - Спасибо за добавление. Мы уже работаем над отдельным материалом про курсы, потому что одной статьи мало, чтобы охватить все крутое по обучению)
Digital-marketing: как выжить в кризис. Опыт реальной компании
Maks
1
комментарий
0
читателей
Полный профиль
Maks - Спасибо за опыт Вашей компании, Иван Папусь. Интересно получилось! Желаю Вашему бизнесу стабильности и успешно пережить все кризисы))
SEO must go on! Почему в кризис нельзя останавливать продвижение сайта
everystraus
43
комментария
0
читателей
Полный профиль
everystraus - Мы даже варианты не рассматривали. Если проект неустойчив, сразу предлагали сбавить обороты до минимума, но и так, чтоб не свалиться в штопор. Именно по СЕО чаще всего.
Как стандартизировать данные семантики с помощью логарифмов
Юлий
1
комментарий
0
читателей
Полный профиль
Юлий - Чем снималась коммерцелизация?
Гайд по работе с освобождающимися доменами: перехват, восстановление, создание сетки и заработок
Daniel Dan
1
комментарий
0
читателей
Полный профиль
Daniel Dan - Интересно и полезно читать, Спасибо!
Платные и бесплатные курсы по SEO и интернет-маркетингу для новичков и опытных специалистов
Алексей Терещенко
1
комментарий
0
читателей
Полный профиль
Алексей Терещенко - Запустил бесплатный марафон для SEO специалистов с нуля в Фейсбуке. Рекомендую начинать совой путь с него и дальше уже определятся, нравится направление или нет. Так же на базе обучающего марафона есть сообщестово в котором все в удобном формате общаются и постигают профессию. Моя миссия - создать сообщество крутых и образованых seo специалистов и поднять качество услуг на высокий уровень. Кому интересно, присоеденяйтесь www.facebook.com/groups/startseofree/
ТОП КОММЕНТАТОРОВ
Комментариев
910
Комментариев
834
Комментариев
554
Комментариев
540
Комментариев
483
Комментариев
381
Комментариев
373
Комментариев
262
Комментариев
249
Комментариев
171
Комментариев
156
Комментариев
141
Комментариев
121
Комментариев
113
Комментариев
97
Комментариев
97
Комментариев
96
Комментариев
89
Комментариев
80
Комментариев
77
Комментариев
67
Комментариев
60
Комментариев
60
Комментариев
59
Комментариев
57

Отправьте отзыв!
Отправьте отзыв!