Россия+7 (495) 960-65-87

Optimization 2016: в окрестностях «Палеха»

Россия+7 (495) 960-65-87
Шрифт:
0 3715
Садовский.png

1–2 декабря в Москве прошла конференция Optimization 2016. В секции «Поисковые машины» Александр Садовский (Яндекс) выступил с докладом «В окрестностях Палеха».

Поисковыми системами создано множество алгоритмов, позволяющих лучше понимать текстовую часть запроса. Но Яндекс стремится понять пользовательские запросы еще лучше. Поэтому команда поиска обратила внимание на нейросети.

Есть много известных технологий для обработки больших объемов текстовой информации, например, Word2vec или DSSM. Проблемы этих реализаций в том, что они академические. Любой академический алгоритм работает со стандартным множеством документов и запросов и показывает хорошие научные результаты, но при попытке применить его к реальным базам с огромным количеством документов, он дает либо маленький, либо нулевой прирост качества.

Ни один из алгоритмов с первой попытки не удалось заставить работать, поэтому Яндекс перешел к поиску собственной технологии, которая даст выгоду пользователю и прирост качества поиска. Так появился алгоритм «Палех».

Устройство.png

На слайде выше структура нейросети, где смешиваются слова, словесные биграммы и буквенные триграммы. В результате этого нейросеть получает два разных вектора – вектор запроса и вектор заголовка документа.

Если эти векторы близки, это значит, что запрос похож на заголовок документа. Если они различаются, это означает, что они разные и находить по этому запросу этот документ не нужно. Получается, можно сравнивать запросы и тексты документов с помощью нейросетей.

Основная проблема в том, что нейросеть нужно учить. Она, как ребенок, который еще ничего не знает, но который может научиться многому, если все сделать правильно. И для этого нужны отрицательные примеры и положительные примеры. Если одного из этих классов примеров не будет, нейросеть ничему не научится.

Классический подход к обучению состоит в том, что в качестве обучающего множества берутся клики, как-то решается проблема их разреженности и в среднем на этом множестве система обучается. Но этот подход показал довольно слабые результаты. И этому есть свои причины.

Например, есть довольно большой пласт документов, которые дают ответ прямо в сниппете. Логично, что по такому документу пользователь не кликнет, хотя он мог послужить положительным примером.

Ответ в сниппете.png

Основное достижение в разработке «Палеха» состоит в том, что Яндекс научился находить правильные примеры для обучения, и это дало существенный прирост качества.

Что берется в качестве положительных примеров? Яндексу удалось построить модель, которая позволяет предсказывать, насколько пользователь заинтересован в том, что он видит на сайте по данному запросу, и задержится ли он там надолго. Это стало положительным примером.

Не менее важны отрицательные примеры. Вот некоторые варианты:

Первый – случайные документы. В базе Яндекса миллиарды документов, но даже по самой широкой теме многословного запроса релевантной является лишь доля процента в выдаче. Это означает, что, взяв случайный заголовок, мы с большой вероятностью получим нерелевантный документ. Нейросеть решила эту проблему просто: если слова запроса встречались в заголовке, она считала его релевантным, если нет – нерелевантным. Нужно было усложнить ей задачу.

Второй вариант – слова запроса в заголовке случайного документа. Но нейросеть научилась обходить и это, так что качество поиска не росло.

Третий вариант – Яндекс заставил нейросеть бороться саму с собой с помощью подхода hard negative mining. Когда мы берем некоторый пул заголовков, которые не являются релевантными и относятся к случайным документам, нейросеть считает какие-то из них более подходящими. Если взять самые подходящие из нерелевантных и сказать, что это и есть отрицательный пример, качество начинает расти.

В результате правильное множество отрицательных и положительных примеров дало резкий рост качества по текстовому поиску в дополнение к тем алгоритмам, что у нас уже имеются.

Вот примеры работы «Палеха» по сравнению с алгоритмом BM25:

Пример 1.png

А это результат для коммерческого запроса:

Пример 2.png

В завершение выступления Александр ответил на популярные вопросы про «Палех». Оказалось, что:

  • «Палех» охватывает все типы запросов и все языки и регионы.
  • Его эффективность составляет pFound + 1,6% (на запросах длинного хвоста).
  • «Палех» может влиять на изменение трафика на сайт.
  • Алгоритм малоэффективен при поиске цитат. 
(Нет голосов)
Читайте нас в Telegram - digital_bar

Случилось что-то важное? Поделитесь новостью с редакцией.


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
    ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
    Рейтинг Известности 2018: старт народного голосования
    Михаил Р
    1
    комментарий
    LANG_NO
    читателей
    Полный профиль
    Михаил Р - 1. Demis 2. кокс 3. Ашманов 4. Скобеев 5. Digital Strategy
    Сколько ссылок помогут продвинуть молодой сайт
    Павел Андрейчук
    26
    комментариев
    LANG_NO
    читателей
    Полный профиль
    Павел Андрейчук - Дело в том, что вряд ли в ваших платных "качественных" кейсах найдётся хоть пару % действительно новой и полезной информации которой бы не было на общедоступных источниках.
    Рейтинг Известности 2018: второй этап народного голосования
    Константин Сокол
    3
    комментария
    LANG_NO
    читателей
    Полный профиль
    Константин Сокол - Кто был ответственный за дизайн таблицы голосования? Копирайтер?
    Сайт на WordPress: за и против
    Мира Смурков
    1
    комментарий
    LANG_NO
    читателей
    Полный профиль
    Мира Смурков - Людмила, я согласен с большинством комментаторов. Вы хоть один полноценный магазин сделали на этих движках? Woocommerce это система с супер возможностями. И к ней есть дополнительные модули, с функционалом, который вряд ли появиться на Битрикс. А самому это программировать - сотни тысяч рублей на разработку. А приведя в пример сложности с robots.txt и Sitemap вы ставите под вопрос вашу компетенцию в понимании Интернет-бизнеса и веб-разработки в целом. Во-первых это такие мелочи, а во-вторых это все делается на вордпресса за 2 минуты, и опять же с возможностями многократно превышающими Битрикс.
    Кейс: вывод лендинга по изготовлению флагов на заказ в ТОП 1 по Санкт-Петербургу
    utka21
    5
    комментариев
    LANG_NO
    читателей
    Полный профиль
    utka21 - Кейс как кейс. Для некоторых станет вполне возможно полезным. ( Для конкурентов точно) . А вот с комментариями , что то пошло не так )
    Google обошел Яндекс по популярности в России в 2018 году: исследование SEO Auditor
    Рамблер
    1
    комментарий
    LANG_NO
    читателей
    Полный профиль
    Рамблер - Вот вроде отечественный - это сказано верно.. «Я́ндекс» — российская транснациональная компания, зарегистрированная в Нидерландах. Так говорится в Википедии. И с хрена ли ОТЕЧЕСТВЕННЫЙ поисковик зарегистрирован в Европе? И где платится основная часть налогов? Ну-ууу, точно не в России. И если запахнет жаренным, то был Яндекс и нет Яндекса!
    Обзор популярных CMS: плюсы и минусы
    Гость
    1
    комментарий
    LANG_NO
    читателей
    Полный профиль
    Гость - У Битрикса техническое seo сильно страдает, чтоб оно там было нормальным придется все переделать. Безопасность у Битрикса тоже низкая, особено если надо дорабатывать функционал, как только правиться функционал у Битрикс , то уровень ее безопасности определяет тот разработчик , который этим занимается. Самые безопасные движки те, что нет в общем доступе и где нельзя ничего редактировать в коде. =)
    8 методик в SEO, от которых давно пора отказаться
    Евгений Сметанин
    11
    комментариев
    LANG_NO
    читателей
    Полный профиль
    Евгений Сметанин - Факторов вообще очень много, согласитесь, вы будете использовать максимальное их количество, особенно, если в ТОПе засели агрегаторы с сумасшедшими ПФ. В таких случаях, вхождение ключа в домен для маленького профильного сайта, сыграет свою положительную роль. Конечно же, если контент на страницах хорошего качества. У меня есть несколько успешных кейсов на эту тему. На сайте продают несколько видов товаров, а выстреливает в ТОП тот, название которого присутствует в доменном имени. Как корабль назовешь, так он и поплывет, верно?))
    Инструкция: настраиваем цели Яндекс.Метрики через Google Tag Manager
    Roman Gorkunenko
    1
    комментарий
    LANG_NO
    читателей
    Полный профиль
    Roman Gorkunenko - Здравствуйте. Подскажите, пожалуйста, можно с айпи метрики вытащить среднюю стоимость клика по утм меткам? В метрике есть такой шаблон tags_u_t_m, но он не совместим с меткой директа, у них разные префиксы.
    Стартовал сбор заявок на участие в рейтинге «Известность бренда SEO-компаний 2018»
    Артем Первухин
    1
    комментарий
    LANG_NO
    читателей
    Полный профиль
    Артем Первухин - Make KINETICA Great Again!
    ТОП КОММЕНТАТОРОВ
    Комментариев
    910
    Комментариев
    834
    Комментариев
    554
    Комментариев
    540
    Комментариев
    483
    Комментариев
    373
    Комментариев
    343
    Комментариев
    262
    Комментариев
    244
    Комментариев
    171
    Комментариев
    156
    Комментариев
    137
    Комментариев
    121
    Комментариев
    100
    Комментариев
    97
    Комментариев
    97
    Комментариев
    96
    Комментариев
    80
    Комментариев
    71
    Комментариев
    67
    Комментариев
    60
    Комментариев
    59
    Комментариев
    57
    Комментариев
    56
    Комментариев
    55

    Отправьте отзыв!
    Отправьте отзыв!