Optimization 2016: в окрестностях «Палеха»

Россия+7 (495) 960-65-87
Шрифт:
0 3317
Садовский.png

1–2 декабря в Москве прошла конференция Optimization 2016. В секции «Поисковые машины» Александр Садовский (Яндекс) выступил с докладом «В окрестностях Палеха».

Поисковыми системами создано множество алгоритмов, позволяющих лучше понимать текстовую часть запроса. Но Яндекс стремится понять пользовательские запросы еще лучше. Поэтому команда поиска обратила внимание на нейросети.

Есть много известных технологий для обработки больших объемов текстовой информации, например, Word2vec или DSSM. Проблемы этих реализаций в том, что они академические. Любой академический алгоритм работает со стандартным множеством документов и запросов и показывает хорошие научные результаты, но при попытке применить его к реальным базам с огромным количеством документов, он дает либо маленький, либо нулевой прирост качества.

Ни один из алгоритмов с первой попытки не удалось заставить работать, поэтому Яндекс перешел к поиску собственной технологии, которая даст выгоду пользователю и прирост качества поиска. Так появился алгоритм «Палех».

Устройство.png

На слайде выше структура нейросети, где смешиваются слова, словесные биграммы и буквенные триграммы. В результате этого нейросеть получает два разных вектора – вектор запроса и вектор заголовка документа.

Если эти векторы близки, это значит, что запрос похож на заголовок документа. Если они различаются, это означает, что они разные и находить по этому запросу этот документ не нужно. Получается, можно сравнивать запросы и тексты документов с помощью нейросетей.

Основная проблема в том, что нейросеть нужно учить. Она, как ребенок, который еще ничего не знает, но который может научиться многому, если все сделать правильно. И для этого нужны отрицательные примеры и положительные примеры. Если одного из этих классов примеров не будет, нейросеть ничему не научится.

Классический подход к обучению состоит в том, что в качестве обучающего множества берутся клики, как-то решается проблема их разреженности и в среднем на этом множестве система обучается. Но этот подход показал довольно слабые результаты. И этому есть свои причины.

Например, есть довольно большой пласт документов, которые дают ответ прямо в сниппете. Логично, что по такому документу пользователь не кликнет, хотя он мог послужить положительным примером.

Ответ в сниппете.png

Основное достижение в разработке «Палеха» состоит в том, что Яндекс научился находить правильные примеры для обучения, и это дало существенный прирост качества.

Что берется в качестве положительных примеров? Яндексу удалось построить модель, которая позволяет предсказывать, насколько пользователь заинтересован в том, что он видит на сайте по данному запросу, и задержится ли он там надолго. Это стало положительным примером.

Не менее важны отрицательные примеры. Вот некоторые варианты:

Первый – случайные документы. В базе Яндекса миллиарды документов, но даже по самой широкой теме многословного запроса релевантной является лишь доля процента в выдаче. Это означает, что, взяв случайный заголовок, мы с большой вероятностью получим нерелевантный документ. Нейросеть решила эту проблему просто: если слова запроса встречались в заголовке, она считала его релевантным, если нет – нерелевантным. Нужно было усложнить ей задачу.

Второй вариант – слова запроса в заголовке случайного документа. Но нейросеть научилась обходить и это, так что качество поиска не росло.

Третий вариант – Яндекс заставил нейросеть бороться саму с собой с помощью подхода hard negative mining. Когда мы берем некоторый пул заголовков, которые не являются релевантными и относятся к случайным документам, нейросеть считает какие-то из них более подходящими. Если взять самые подходящие из нерелевантных и сказать, что это и есть отрицательный пример, качество начинает расти.

В результате правильное множество отрицательных и положительных примеров дало резкий рост качества по текстовому поиску в дополнение к тем алгоритмам, что у нас уже имеются.

Вот примеры работы «Палеха» по сравнению с алгоритмом BM25:

Пример 1.png

А это результат для коммерческого запроса:

Пример 2.png

В завершение выступления Александр ответил на популярные вопросы про «Палех». Оказалось, что:

  • «Палех» охватывает все типы запросов и все языки и регионы.
  • Его эффективность составляет pFound + 1,6% (на запросах длинного хвоста).
  • «Палех» может влиять на изменение трафика на сайт.
  • Алгоритм малоэффективен при поиске цитат. 
Читайте нас в Telegram - digital_bar

Случилось что-то важное? Поделитесь новостью с редакцией.


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
    ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
    Кейс: как продвинуть сайт производителя мебели на заказ в Москве
    Art Moderator
    2
    комментария
    0
    читателей
    Полный профиль
    Art Moderator -
    32 инструмента в помощь SEO-специалисту
    clark
    3
    комментария
    0
    читателей
    Полный профиль
    clark - Я - г-н Марк Джо из корпорации corp, мы являемся законной, зарегистрированной и гарантированной кредитной компанией, мы предоставляем 3% -ые кредиты частным лицам, компаниям, государственным учреждениям и деловым организациям и людям всех родов. Свободные кредиты - это решение всех ваших финансовых проблем. свяжитесь с нами по электронной почте: mjoe0123@gmail.com
    Исследование: влияние smart-ссылок на продвижение по СЧ-запросам
    Анатолий Шевчик
    1
    комментарий
    0
    читателей
    Полный профиль
    Анатолий Шевчик - +1097988
    Контекст под SEO. Как поисковая реклама помогает позициям в органической выдаче
    Сергей Дембицкий «Sima-Land.ru»
    22
    комментария
    0
    читателей
    Полный профиль
    Сергей Дембицкий «Sima-Land.ru» - Боже мой, неужели SEO-маги вернулись??? Открыть в роботс utm-метки для индексации и наплодить дублей...что? А расчеты в конце статьи про бюджет на SEO и контекст...откуда эти пропорции? Как по мне, SEO-магия вне Хогвартс. Спасибо, развеселили!
    Все, что нужно SEO-специалисту. Обзор инструментов
    Администратор Сайта
    1
    комментарий
    1
    читатель
    Полный профиль
    Администратор Сайта - Шаришь в seo! Сервис реально хороший
    Два идеальных способа разориться на старте интернет-магазина
    Стас
    4
    комментария
    0
    читателей
    Полный профиль
    Стас - Seonews в последнее время такую чушь несет! Где вы таких афторов находите? Статья ничего не стоит и несет чушь! Кто хоть немного понимает в этом так вам и скажет, и такие де комментаторы горе-сеошники, просто смешно читать, вы хоть модерируете ваши статьи или просто для воды на сайте?! Бред сивой кобылы эта статья до самой последней точки!!!
    4 способа быстро собрать теги для сайта
    Рустем Низамутинов
    5
    комментариев
    0
    читателей
    Полный профиль
    Рустем Низамутинов - Расписал и закинул в Google Docs, а то здесь в комментариях ссылки на активны. docs.google.com/document/d/1r0TZLNrQyYLdIzDQsD5YKlMG41HUGQgEep3bxE_ij-M/edit?usp=sharing
    Яндекс перестал индексировать сайты, созданные на Wix
    Константин Даткунас
    3
    комментария
    0
    читателей
    Полный профиль
    Константин Даткунас - Было бы интересно посмотреть саму выборку из 10 000 и методику анализа.
    Яндекс: как мы модерируем объявления
    Гость
    5
    комментариев
    0
    читателей
    Полный профиль
    Гость - Это ж Яндекс, чего вы ожидали-то? Коммерческая структура с раздутым штатом, задачей которой является заработать больше денег. Любыми методами. Задача всех пользователей посадить на Директ, даже если придется разрушить суть рунета, реализуется по полной программе. Все возражающие караются и выпиливаются. И каждый из сотрудников делает все возможное и невозможное, чтобы реализовать любую дурацкую идею - за это еще и премию выхватить можно. Даже если потом придется выполнять "откат", премиальные уже заплачены. Так было с одним из фильтров Яндекса, так было с купленным им сайтом Кинопоиска, который из русскоязычной энциклопедии кино был превращен за безумные деньги в банальный платный онлайн-кинотеатр.
    Как мы разработали и вывели в ТОП сайт курсов рисования
    Иван Стороженко
    21
    комментарий
    0
    читателей
    Полный профиль
    Иван Стороженко - Добрый день. 1)Чаще всего основная проблема заключается, в согласовании с клиентом добавляемого контента и то как он будет отображаться. На данном сайте фото и услуги конечно предоставлял клиент, все остальное уже делали мы. 2)Да в принципе, когда есть команда и понимание, что нужно делать, все идет быстро (опять же основная заминка идет на согласовании с клиентом) 3)Смысла делать новый в данном случает нет. В принципе доделывался полноценный сайт. 4)Когда клиент уже не предоставляет информацию, приходится искать у конкурентов (например с других стран или регионов). Но чаще всего клиент, хоть что-то "подкидывает".
    ТОП КОММЕНТАТОРОВ
    Комментариев
    910
    Комментариев
    834
    Комментариев
    554
    Комментариев
    540
    Комментариев
    483
    Комментариев
    373
    Комментариев
    325
    Комментариев
    262
    Комментариев
    234
    Комментариев
    171
    Комментариев
    156
    Комментариев
    137
    Комментариев
    121
    Комментариев
    97
    Комментариев
    97
    Комментариев
    95
    Комментариев
    86
    Комментариев
    80
    Комментариев
    67
    Комментариев
    60
    Комментариев
    59
    Комментариев
    57
    Комментариев
    55
    Комментариев
    54
    Комментариев
    53

    Отправьте отзыв!
    Отправьте отзыв!