Optimization 2016: в окрестностях «Палеха»

Россия+7 (495) 960-65-87
Шрифт:
0 3019
Садовский.png

1–2 декабря в Москве прошла конференция Optimization 2016. В секции «Поисковые машины» Александр Садовский (Яндекс) выступил с докладом «В окрестностях Палеха».

Поисковыми системами создано множество алгоритмов, позволяющих лучше понимать текстовую часть запроса. Но Яндекс стремится понять пользовательские запросы еще лучше. Поэтому команда поиска обратила внимание на нейросети.

Есть много известных технологий для обработки больших объемов текстовой информации, например, Word2vec или DSSM. Проблемы этих реализаций в том, что они академические. Любой академический алгоритм работает со стандартным множеством документов и запросов и показывает хорошие научные результаты, но при попытке применить его к реальным базам с огромным количеством документов, он дает либо маленький, либо нулевой прирост качества.

Ни один из алгоритмов с первой попытки не удалось заставить работать, поэтому Яндекс перешел к поиску собственной технологии, которая даст выгоду пользователю и прирост качества поиска. Так появился алгоритм «Палех».

Устройство.png

На слайде выше структура нейросети, где смешиваются слова, словесные биграммы и буквенные триграммы. В результате этого нейросеть получает два разных вектора – вектор запроса и вектор заголовка документа.

Если эти векторы близки, это значит, что запрос похож на заголовок документа. Если они различаются, это означает, что они разные и находить по этому запросу этот документ не нужно. Получается, можно сравнивать запросы и тексты документов с помощью нейросетей.

Основная проблема в том, что нейросеть нужно учить. Она, как ребенок, который еще ничего не знает, но который может научиться многому, если все сделать правильно. И для этого нужны отрицательные примеры и положительные примеры. Если одного из этих классов примеров не будет, нейросеть ничему не научится.

Классический подход к обучению состоит в том, что в качестве обучающего множества берутся клики, как-то решается проблема их разреженности и в среднем на этом множестве система обучается. Но этот подход показал довольно слабые результаты. И этому есть свои причины.

Например, есть довольно большой пласт документов, которые дают ответ прямо в сниппете. Логично, что по такому документу пользователь не кликнет, хотя он мог послужить положительным примером.

Ответ в сниппете.png

Основное достижение в разработке «Палеха» состоит в том, что Яндекс научился находить правильные примеры для обучения, и это дало существенный прирост качества.

Что берется в качестве положительных примеров? Яндексу удалось построить модель, которая позволяет предсказывать, насколько пользователь заинтересован в том, что он видит на сайте по данному запросу, и задержится ли он там надолго. Это стало положительным примером.

Не менее важны отрицательные примеры. Вот некоторые варианты:

Первый – случайные документы. В базе Яндекса миллиарды документов, но даже по самой широкой теме многословного запроса релевантной является лишь доля процента в выдаче. Это означает, что, взяв случайный заголовок, мы с большой вероятностью получим нерелевантный документ. Нейросеть решила эту проблему просто: если слова запроса встречались в заголовке, она считала его релевантным, если нет – нерелевантным. Нужно было усложнить ей задачу.

Второй вариант – слова запроса в заголовке случайного документа. Но нейросеть научилась обходить и это, так что качество поиска не росло.

Третий вариант – Яндекс заставил нейросеть бороться саму с собой с помощью подхода hard negative mining. Когда мы берем некоторый пул заголовков, которые не являются релевантными и относятся к случайным документам, нейросеть считает какие-то из них более подходящими. Если взять самые подходящие из нерелевантных и сказать, что это и есть отрицательный пример, качество начинает расти.

В результате правильное множество отрицательных и положительных примеров дало резкий рост качества по текстовому поиску в дополнение к тем алгоритмам, что у нас уже имеются.

Вот примеры работы «Палеха» по сравнению с алгоритмом BM25:

Пример 1.png

А это результат для коммерческого запроса:

Пример 2.png

В завершение выступления Александр ответил на популярные вопросы про «Палех». Оказалось, что:

  • «Палех» охватывает все типы запросов и все языки и регионы.
  • Его эффективность составляет pFound + 1,6% (на запросах длинного хвоста).
  • «Палех» может влиять на изменение трафика на сайт.
  • Алгоритм малоэффективен при поиске цитат. 
Читайте нас в Telegram - digital_bar

Случилось что-то важное? Поделитесь новостью с редакцией.


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
    ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
    Рейтинг «Известность бренда SEO-компаний 2017»: народное голосование
    Иван
    1
    комментарий
    0
    читателей
    Полный профиль
    Иван - 1) IT-Agency 2) Пиксели 3) 1ps 4) Ингейт 5) Нетпики
    «Баден-Баден»: как выйти из-под фильтра
    Сергей Дембицкий «Sima-Land.ru»
    16
    комментариев
    0
    читателей
    Полный профиль
    Сергей Дембицкий «Sima-Land.ru» - Скрины Метрики показывать не буду, но мы (sima-land.ru - 1,5 млн. стр. в поиске Яндекс) в сентябре загремели под ББ, в разгар сезона и вышли из-под фильтра, спустя 50 дней, удалив все тексты с сайта: категории + карточки товаров (описание). Трафик с Google только вырос. Тексты возвращать собираемся, но процесс будет длительный, тексты будем теперь писать исключительно полезные, т.к. было больно :-))
    Второе дыхание ссылочного продвижения
    Автопилот
    14
    комментариев
    0
    читателей
    Полный профиль
    Автопилот - Еще лучше, когда продвижение осуществляется комплексно :)
    «Прямая линия» с Александром Алаевым («АлаичЪ и Ко»): отвечаем на вопросы
    Александр Алаев
    13
    комментариев
    0
    читателей
    Полный профиль
    Александр Алаев - Роман. Тут ответ очень простой. Каждый запрос можно четко разделить на коммерческий или некоммерческий. "Купить слона" и его длинные хвосты - коммерческий. "Как выбрать слона" и подобные - информационные. Вот под коммерческие ключи должны быть страницы услуг или каталога товаров. А под информационку - блог. Очень важно не путать их, тем более несоответствующая коммерческим факторам страниц просто не продвинется, то есть по запросу с "купить" блог никогда не будет показываться в выдаче, так же как и страница услуги/товаров не покажется по "как выбрать". Понятно примерно?
    Кейс: продвигаем бизнес по продаже пластиковых окон в Москве
    Иван Стороженко
    5
    комментариев
    0
    читателей
    Полный профиль
    Иван Стороженко - 1. По началу вообще не использовали, сейчас уже много каналов используется. 2. Все может быть, в принципе сайты должны быть удобны для пользователя, для этого и нужна схожесть между собой. Честно говоря старались брать все самое интересное у конкурентов + подкреплять своими идеями.
    Инфографика: самые распространенные SEO-ошибки Рунета
    Dmitro Grunt
    2
    комментария
    0
    читателей
    Полный профиль
    Dmitro Grunt - Кстати, у проектов которые продвигает Нетпик все тайтлы не более 65 символов? Или вы надеетесь что кто то послушает советов и отдаст вам часть трафика? :-)
    Google.ru внесли в реестр запрещенных сайтов
    Гость
    1
    комментарий
    0
    читателей
    Полный профиль
    Гость - Гон, все работает и будет работать. Да и пусть банят, будет как с рутрекером.
    Сердитый маркетолог: как вы сами хороните свой сайт, или 16 принципов, которые нужно усвоить заказчикам SEO
    Анна Макарова
    313
    комментария
    0
    читателей
    Полный профиль
    Анна Макарова - Artem Sergeev, ваш комментарий удален за агрессивный настрой и безосновательные обвинения. Держите себя в руках!
    «Прямая линия» с Артуром Латыповым: отвечаем на вопросы
    God Koss
    1
    комментарий
    0
    читателей
    Полный профиль
    God Koss - Добрый день! Есть сайты одной компании продвигающиеся в разных странах. .ru .com .net. На российском сайте два языка ru и en, на остальных до 10 языков. Недавно сайт ru по основному брендовому запросу выпал из выдачи Яндекс но после апа вернулся на вторую позицию. На вопрос аффилирования в тех поддержку, получит ответ, что всё в порядке и сайт com не учавствует в выдаче. Но он есть и занимает 1 место. Как быть в данной ситуации? Так же, после возврата в топ 10 по этому запросу зашла еще одна внутренняя страница. Могло ли это случиться из-за каннибализации запроса? Немного изменил description на внутренней, исключил вхождения брендового запроса. Жду апа. Хотел бы услышать ваше мнение. Заранее благодарю!
    Западные специалисты выяснили, как повысить позиции ресурса в выдаче Google
    Serhii Diachenko
    1
    комментарий
    0
    читателей
    Полный профиль
    Serhii Diachenko - Спасибо Бернис!
    ТОП КОММЕНТАТОРОВ
    Комментариев
    910
    Комментариев
    834
    Комментариев
    554
    Комментариев
    540
    Комментариев
    483
    Комментариев
    373
    Комментариев
    313
    Комментариев
    262
    Комментариев
    229
    Комментариев
    171
    Комментариев
    156
    Комментариев
    137
    Комментариев
    121
    Комментариев
    97
    Комментариев
    97
    Комментариев
    95
    Комментариев
    80
    Комментариев
    77
    Комментариев
    67
    Комментариев
    60
    Комментариев
    59
    Комментариев
    55
    Комментариев
    54
    Комментариев
    52
    Комментариев
    49

    Отправьте отзыв!
    Отправьте отзыв!