×
Россия +7 (495) 139-20-33

Ученые Tinkoff Research совершили открытие в области ИИ и рекомендательных систем для онлайн-торговли

Россия +7 (495) 139-20-33
Шрифт:
0 6549
Подпишитесь на нас в Telegram

Ученые из Лаборатории исследований искусственного интеллекта Tinkoff Research совершили открытие в области рекомендательных систем в онлайн-торговле.

Они разработали новый алгоритм TAIW (Time-Aware Item-based Weighting) для более точного прогнозирования потребительских покупок в интернете с учетом времени покупок и их периодичности.

Новый метод позволит пользователям сэкономить время, затрачиваемое на составление конкретной корзины, а также напомнит купить товар, про который пользователь мог забыть.

Бизнесу использование разработанного учеными Тинькофф алгоритма поможет повысить удовлетворенность клиентов, увеличить конверсию в покупку и простимулировать рост среднего чека.

Как устроен алгоритм TAIW

Как устроен алгоритм TAIW: модули «Повторная покупка» и «Соседство»

Суть открытия

Алгоритм TAIW более точно предсказывает, какие товары клиенту потребуются в ближайшем будущем с учетом точного момента покупки. Он учитывает не только состав предыдущих покупок конкретного человека и схожих по профилю пользователей – он также анализирует точное время приобретения конкретных товаров в прошлом и периодичность покупок, выявляет взаимосвязи между приобретением товаров из разных категорий. Это помогает сделать рекомендации максимально персонализированными, что особенно важно в случае нетипичных паттернов поведения отдельных клиентов.

Исследователи провели эксперименты на реальных данных: в частности, использовали датасет онлайн-площадки Taobao, которая входит в Alibaba Group. В результате экспериментов TAIW стал самым эффективным методом среди аналогов в задаче next basket recommendation (NBR или рекомендация следующей корзины) за счет более точного ранжирования товаров на основе их актуальности в конкретный момент времени.

Согласно результатам экспериментов, алгоритм повышает точность рекомендательной системы до 8%.

Это позволяет пользователям получать более персонализированные рекомендации, тратить меньше времени на контроль домашних запасов и выбор новых товаров. TAIW заранее знает, через какое время у пользователя закончатся продукты, и предложит ему купить их в нужный момент.

Чем алгоритм отличается от других методов

Специалисты в области искусственного интеллекта уже долгое время работают над улучшением рекомендаций для интернет-торговли. Чтобы предсказать повторные покупки, ученые часто используют методы:

  • цепи Маркова (математическая модель, которая помогает предсказывать будущие события на основе прошлых событий),

  • рекуррентные нейронные сети (модели машинного обучения, которые анализируют последовательность действий пользователя).

Однако эти инструменты не всегда позволяют корректно учесть при прогнозировании частоту покупки, которая не только различается у разных товаров, но также бывает индивидуальна для разных пользователей. Например, один человек может покупать кондиционер для белья каждые три недели, а другой – раз в полгода.

Алгоритм TAIW состоит из двух модулей:

  • «Повторная покупка» работает на основе процесса Хоукса – статистической модели, которая позволяет понять временные закономерности и зависимости между событиями. Так алгоритм определяет, какие товары покупал пользователь, как часто и когда была совершена последняя покупка. Этот модуль помогает определить, когда конкретные товары будут наиболее актуальными для конкретного покупателя.

  • «Соседство» помогает описать привычки пользователей с похожими предпочтениями. Эти данные используются, чтобы обеспечить более разнообразные рекомендации для конкретного человека.

Зачем нужны рекомендательные системы

Мировой рынок онлайн-торговли растет ускоренными темпами с начала пандемии COVID-19. По данным eMarketer, в 2023 году объем глобального e-commerce приблизился к 6 трлн долларов, а в 2027 году превысит 8 трлн. Это одно из самых динамично развивающихся направлений экономики, где разворачивается серьезная конкуренция как между технологическими гигантами, которые выступают площадками, так и между отдельными небольшими продавцами (например, по данным на 2022 год, более 60% продаж на Amazon делают независимые селлеры). Также растет и ассортимент – к примеру, на маркетплейсах могут быть представлены миллионы или даже миллиарды товаров.

Технологии, в частности рекомендательные алгоритмы, – одно из главных направлений, где уже разворачивается конкурентная борьба, которая будет становиться все более серьезной в ближайшие годы. Для пользователей растет число похожих вариантов для покупки, а процесс выбора становится все более затруднительным.

Для продавцов также все сложнее становится привлечь и удержать внимание покупателей. Когда пользователи сталкиваются с огромным выбором товаров, алгоритмы рекомендаций становятся персональными помощниками, предлагая подходящие варианты и сокращая временные затраты на поиск.

Например, в онлайн-магазинах часто решается задача next basket recommendation (NBR), во время которой требуется предугадать состав следующей корзины пользователя в соответствии с его потребностями.

Лаборатория исследований ИИ Tinkoff Research

Tinkoff Research – российская исследовательская группа, которая занимается научными исследованиями внутри компании, а не на базе некоммерческой организации.

Ученые из Tinkoff Research исследуют наиболее перспективные области ИИ: обработку естественного языка (NLP), компьютерное зрение (CV), обучение с подкреплением (RL) и рекомендательные системы (RecSys). По результатам экспериментов они пишут научные статьи для наиболее авторитетных научных конференций: NeurIPS, ICML, ACL, CVPR и других.

Источник: пресс-релиз Tinkoff

Случилось что-то важное? Поделитесь новостью с редакцией.


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
Накрутка поведенческих факторов: дорого, сложно, но можно. Если очень хочется
Oleg_bobr2012
1
комментарий
0
читателей
Полный профиль
Oleg_bobr2012 - Мда...Может Анне сразу в Яндекс написать кейсы по накрутке ПФ. Я бы такого сотрудника гнал вон.
28 способов повысить конверсию интернет-магазина
Татьяна
1
комментарий
0
читателей
Полный профиль
Татьяна - Очень действенные рекомендации представлены в статье! Всё четко расписано и легко внедряемо в работу интернет-магазинов.Удобство и наглядность+различные бонусы и скидки-именно то, что и цепляет покупателя.
Создали ресурс для металлургов, который позволяет следить за аналитикой рынка и осуществлять продажи
Наталья Сталь
3
комментария
0
читателей
Полный профиль
Наталья Сталь -
Какие сайты лидировали в поиске Яндекса и Google в 2023 году
Гость
1
комментарий
0
читателей
Полный профиль
Гость - Если что по рейтингу вы не правы, есть ядро по которому производиться оценка и вы можете по нему самостоятельно все посмотреть. Единственный объективный рейтинг по SEO. Других не знаю Ну я вам скажу что это не так и в предыдущие года сайт моего клиента попадал в рейтинг, при чем несколько раз. И я прекрасно знал еще до объявления результатов кто лидер - рейтинг прозрачный, есть фразы по которым набираются баллы. В этом году наш сайт не попал в рейтинг например и это было понятно, что не попадет (по статистике позиций)
5 способов увидеть сайт глазами поисковика: анализируем скрытый контент и cloaking
Гость
1
комментарий
0
читателей
Полный профиль
Гость - Сейчас клоаку прячут, так что под нее можно глянуть только с гуггловских ip. Сейчас только гуггл сервисами можно глянуть
Михаил Сливинский (Яндекс): об алгоритмах качества в поиске, сгенерированных текстах и накрутке ПФ
Анна Макарова
388
комментариев
0
читателей
Полный профиль
Анна Макарова - Интересно, из каких именно слов Михаила, вы сделали такой вывод?
Optimization 2023: текстовый анализ в 2024 году и методы увеличения релевантности страниц
Игорь
1
комментарий
0
читателей
Полный профиль
Игорь - это информация максимум уровня middle seo. что такой проходняк делает в секции hard seo когда-то великой ашмановки, еще и в исполнении токсичного инфоцыгана большая загадка)) ходил последние 5 лет на нее, но больше пожалуй не стоит
5 ошибок отдела продаж, из-за которых вы теряете клиентов
Андрей
1
комментарий
0
читателей
Полный профиль
Андрей - Крутая статья! Можно еще указать: Работу без CRM-системы - я считаю, что это основа отдела продаж. Потому что не все компании решаются на внедрение отдельно системы для отдела продаж. Но зато можно что то многофункциональное внедрить аспро.клауд или что то подобное
Контекстная реклама, таргет и SEO вошли в топ-3 каналов продвижения бизнеса в 2023 году
Сергей
1
комментарий
0
читателей
Полный профиль
Сергей - Например, так {censored} - продвижение карточки в органике Google :) Также в Яндекс.Директ есть направление контекста для маркетплейсов.
Как продвигать сайт на Tilda: особенности продвижения и рекомендации специалистов
Konstantin Bulgakov
15
комментариев
0
читателей
Полный профиль
Konstantin Bulgakov - Спасибо за рекомендации, полезно. Но кажется, что тематика в кейсе не самая конкурентная + часть запросов в продвижение брендовые, там и без сео позиции будут в топе.
ТОП КОММЕНТАТОРОВ
Комментариев
910
Комментариев
834
Комментариев
554
Комментариев
540
Комментариев
483
Комментариев
388
Комментариев
373
Комментариев
262
Комментариев
249
Комментариев
171
Комментариев
156
Комментариев
141
Комментариев
121
Комментариев
120
Комментариев
100
Комментариев
97
Комментариев
97
Комментариев
96
Комментариев
80
Комментариев
77
Комментариев
74
Комментариев
67
Комментариев
64
Комментариев
60
Комментариев
59

Отправьте отзыв!
Отправьте отзыв!