×
Россия +7 (495) 139-20-33

Yac/m 2014: как устроены товарные рекомендации

Россия +7 (495) 139-20-33
Шрифт:
1 4960

5 июня в Москве состоялась конференция Яндекса Yet Another Conference on Marketing 2014. В этом году ключевой темой мероприятия стала электронная торговля.

Виктор ЛамбуртВиктор Ламбурт, отвечающий за разработку проектов направления медиасервисов, а также за рекомендательную систему Яндекса, рассказал, какие идеи лежат в основе рекомендательных алгоритмов и на какие данные эти алгоритмы опираются.

На российском рынке, на самом деле, не так много по-настоящему прибыльных e-commerce проектов. Когда об этом заходит речь, часто звучит такой факт, как слишком высокая стоимость привлечения клиентов. При этом с США стоимость привлечения клиента в три раза выше, чем в России, в категории электроника, которая в США стоит гораздо дешевле, чем в российских магазинах. Это значит, что американский покупатель, привлеченный в американский интернет-магазин тратит гораздо больше, чем российский покупатель. И значительную роль в этом играют товарные рекомендации.

Товарные рекомендации позволяют:

  • увеличить средний чек,
  • увеличить шансы на то, что у вас вообще что-то купят,
  • вернуть покупателя, который уже что-то купил.

В конце 20013 года Amazon представил дронов, которые должны доставлять товары покупателям. Кроме того, тогда же Amazon получил патент на предварительную доставку товара пользователям, которые его еще не заказывали. Система будет анализировать поведение пользователя, его покупки и т.д. В будущем вполне может быть так, что человек захочет купить пакет молока, выйдет из дома, а на пороге его уже будет ждать дрон, который принес ему бутылку молока, а вместе с этим пакет французских круассанов. И человек купит их, хотя изначально не собирался этого делать. Но это будущее.

Сегодня первое, о чем все говорят – это секции «Сопутствующие товары». Человек приходит купить телефон, и это отличный повод продать ему также чехол и прочие аксессуары, которые может и не такие дорогие, как телефон, но более маржинальны, и таким образом увеличить средний чек. Или например, человек выбирает холодильник. Вполне возможно, что перед ним стоит задача обставить кухню, и поэтому можно предложить ему посудомоечную машину или электрическую плиту.

Если товаров в магазине не так много, эти секции могут устанавливаться вручную. Если товаров десятки тысяч, вручную это делать невозможно, и работу нужно автоматизировать. Это можно сделать двумя способами. Первое, можно сделать много разных правил – например, «к товарам из категории телефон предлагать товары из категории чехлы» и т.д. Второе, можно анализировать историю заказов, смотреть, что люди покупают в одной корзине. А еще лучше соединить эти подходы (как и делается в Яндекс.Маркете), что позволяет находить много разных зависимостей.

Виктор Ламбурт

Товарные рекомендации можно использовать, чтобы подтолкнуть пользователя к покупке основного товара. Для этого нужно понять причину, почему он может что-то не купить – товар слишком дорогой, некрасивый, не тот бренд и т.д. , и дать пользователю выбор среди аналогичных, похожих товаров. Здесь анализировать историю заказов уже бессмысленно, т.к. люди не покупают аналоги в одной корзине. Можно смотреть на историю путешествий пользователя по сайту – анализировать, на какие страницы он заходил и что купил в итоге.Также не стоит забывать про персонализацию рекомендаций – по полу, возрасту и т.д. Зависимости можно обнаружить путем простого анализа. Однако когда мы говорим о большом количестве сегментов (по профессии, по брендам, по доходам и т.д.) тут уже простые статистические способы не работают, и на помощь приходит машинное обучение. Общая идея машинного обучения следующая: вы «засовываете» в этот алгоритм все данные, которые у вас есть (какие страницы пользователь просматривал, что он купил, персональную информацию, внешний контекст), и помимо этого показываете алгоритму, какие ситуации хороши. Алгоритм формирует связи и делает рекомендации. Сила этого алгоритма в том, что он может найти очень нетривиальные зависимости с помощью многочисленных данных, например, погода за окном влияет на то, что покупает человек.

Данные приходят из разных каналов. Планшеты, телефоны, компьютеры, куки – это понятно. А еще есть огромный пласт данных, которые находятся в офлайне. Первые данные можно получить путем принудительной регистрации для совершения заказа или входа через соцсеть. Из офлайна можно, например, подтянуть использование дисконтной программы. Есть еще один способ – например, человек идет по торговому центру, а в кармане у него смартфон с включенным wi-fi, и этот смартфон отправляет свой мак-адрес всем роутерам, которые есть вокруг. И можно настроить роутер так, что он будет сохранять этот мак-адрес. И когда человек следующий раз будет проходить мимо этого роутера, система распознает его. И может так получиться, что человек идет в торговый центр, и видит на рекламной панели тот товар, который он давно искал.

Также эту информацию можно использовать, чтобы поговорить с пользователями, которые у вас что-то купили, посредством email-рассылки. Однако предлагаемые товары не должны представлять собой случайную выборку, а подходить к товарам, которые недавно были куплены: газонокосилка в загородный дом, квадрокоптер для сына, у которого день рождения и т.д. Объяснения к рекомендациям, с одной стороны, повышают заинтересованность, а с другой – повышает лояльность пользователя к ним.

Аргументы, которыми вы сопровождаете рекомендаторы, очень важны. Хорошие продавцы для разных товаров составляют разные аргументы. Т.к. все люди представляют собой разные психотипы, можно составлять аргументы под каждый из них. Для определения психотипа психологи используют огромные анкеты, однако, последние исследования показывают, что психотип можно определить, используя поведение человека в интернете – какие запросы задаются, что пишет, с кем общается и т.д.

Что же делать с этим многообразием методов? Во-первых, обязательно использовать блок с сопутствующими товарами. Персональные рекомендации сделать намного сложнее, но если у вас позволяют масштабы бизнеса, можно сделать их самостоятельно. Если данных мало, то бессмысленно это делать самостоятельно или использовать готовые алгоритмы. В этом случае – единственная дорога – идти на маркетплейс. Что касается персональных аргументов, то это скорее вопрос будущего, т.к. готовых решений в этой области пока нет. Но здесь основные козыри у поисковиков и социальных сетей. Т.к. у них есть уникальный массив данных. Впрочем, кое-что можно сделать уже сейчас – если у вас есть рейтинг популярных товаров можете сделать для него несколько описаний по аналогии с тем, как вы делаете несколько лэндингов, и на каждое описание сделать свою рекламную кампанию со своими аргументами. Рекламные сети поймут, для какой аудитории какой тип аргументации подходит, и найдут ее сами.

(Голосов: 5, Рейтинг: 5)
Читайте нас в Telegram - digital_bar

Случилось что-то важное? Поделитесь новостью с редакцией.


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
  • Маришка Анисимова
    1
    комментарий
    0
    читателей
    Маришка Анисимова
    больше года назад
    Согласна! Это классная вещь! У нас в магазине стоит модуль от akin.su и прирост продаж по а/б тестированию был 21%.
    Чем еще можно конверсию поднять?
    -
    0
    +
    Ответить
ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
Кейс: как за 30 дней вывести новый сайт в ТОП выдачи Google
Сергей
2
комментария
0
читателей
Полный профиль
Сергей - Прошёл у Паши курс год назад, пытался продвигать свой сайт portativ.org.ua, но особых продвижений нет. Наверное сео уже умерло??
Как стандартизировать данные семантики с помощью логарифмов
Юлий
1
комментарий
0
читателей
Полный профиль
Юлий - Чем снималась коммерцелизация?
Облако тегов в интернет-магазине: прикладная инструкция по увеличению трафика
Юлия Дмитриева
2
комментария
0
читателей
Полный профиль
Юлия Дмитриева - Согласна с вами, что в любом деле важен индивидуальный подход:)
Специалисты в Рунете заметили глобальную накрутку поведенческих факторов
Дмитрий Кулаевский
1
комментарий
0
читателей
Полный профиль
Дмитрий Кулаевский - кто-нибудь знает как с этим бороться? очень много такого трафа идёт с июля, сайт сильно просел
Яндекс возобновил «показательные порки» за накрутку поведенческих факторов
Антон
1
комментарий
0
читателей
Полный профиль
Антон - Никакой не выпал. Кроме клиентского сайта, который проседал из-за скрутки, о чем Я.Поиску сообщали и клиенту тоже. Ноль реакции от поисковика (продолжайте развивать сайт, никаких проблем нет ...). Клиенту надоело и он заказал накрутку у подрядчиков. Мы искренне ждали бана, сообщали об этом клиенту, т.к. мы все таки делаем все остальное для развития. Как итог: с лета полет нормальный. Сайт растет, никаких проблем. Случайно даже стажер палил тех поддержке факт использования накрутки. И ничего. Сайт растет дальше. Если они не могут ничего принять даже после признания факта накрутки, что они могут сделать с жалобами на накрутку конкурентов?! Никогда не одобряли данные методы, но ... похоже ... все работает :)
Сколько стоит SEO на фрилансе. Кейсы
Людмила
1
комментарий
0
читателей
Полный профиль
Людмила - Очень спорная статья. Особенно оценка. К примеру, за 1500 руб. 200 вечных ссылок с быстрой индексацией. Это про какой год? Про 2020? Точно? Собственно, в текущих реалиях при хорошем раскладе за эти деньги можно получить 3-4 качественные ссылки. А никак не 200. Если 200, то такие ссылки, по 7,5 руб. за штуку выбьют сайт за ТОП-100. А заказчик будет в шоке, он же все правильно делал, по инструкции из статьи в уважаемом издании.
«Нет в наличии»: что делать с карточками отсутствующего товара
freyr energy
1
комментарий
0
читателей
Полный профиль
freyr energy - Thank you so much @ admin for share your valuable thoughts and ideas We always enjoy your articles its inspired a lot by reading your articles day by day. So please accept my thanks and congrats for success of your latest series. We hope, you should published more better articles like ever before solar rooftop
15 языков программирования, за знание которых платят выше среднего
Любомир
2
комментария
0
читателей
Полный профиль
Любомир - Ну и ЗП: ни слова о том что она варируеться от 0 до 100 000$ в год!!! Что до высокой зп надо несколько лет етим заниматся! Что 100 000$ в год на западе заробатывают, а где нибудь в азиатских страннах 100$ в год. В СНГ первые годы в разработчика ЗП как в грузчика на складе - это где то 4-5 тыс. долларов в год, и уже имея несколько лет опыта возможно дойти до 10-20 тыс. долларов в год! Почему нет конкретики? Меня лично нервирует то что людям внушают великие ЗП в АйТи, а люди тупые и ведутся!!!!
Яндекс тестирует оценки сайта в сниппете
Сергей Демин
8
комментариев
0
читателей
Полный профиль
Сергей Демин - вопрос такой: где получить оценку о сайте? а не об организации
От количества к качеству: что происходит с рекламой в Рунете
Евгений
1
комментарий
0
читателей
Полный профиль
Евгений - Истину глаголите!
ТОП КОММЕНТАТОРОВ
Комментариев
910
Комментариев
834
Комментариев
554
Комментариев
540
Комментариев
483
Комментариев
384
Комментариев
373
Комментариев
262
Комментариев
249
Комментариев
171
Комментариев
156
Комментариев
141
Комментариев
121
Комментариев
113
Комментариев
97
Комментариев
97
Комментариев
96
Комментариев
92
Комментариев
80
Комментариев
77
Комментариев
67
Комментариев
60
Комментариев
60
Комментариев
59
Комментариев
57

Отправьте отзыв!
Отправьте отзыв!