Войти как пользователь
Вы можете войти на сайт, если вы зарегистрированы на одном из этих сервисов:

YaC/m 2013, часть 2: big data в рекламе

Россия +7 (495) 960-65-87
Шрифт:
0 2265

16 мая в Москве прошла конференция Яндекса Yet Another Conference on Marketing, посвященная обсуждению опыту и проектов, связанных с Machine Learning, большими данными, вычислениями в маркетинге и рекламе.

Послеобеденную секцию открыл Игорь Ларин, IBM, который рассказал о том, как будет трансформироваться профессия маркетолога в ближайшие 5 лет, какие новые вызовы встанут, и как с помощью новых технологий можно эффективно решать задачи. Для этого был проведен опрос почти 2000 директоров по маркетингу по всему миру (60 из них из России и стран СНГ).

Как показали результаты исследования, в ближайшие 5 лет профессия директора по маркетингу станет сложнее – так считает 79% респондентов. Это связано с цифровой революцией, большим количество данных, менее лояльными и более требовательными заказчиками, которые к тому же становятся гораздо информированнее.

Однако к этим усложнениям полностью готовы лишь 48% опрошенных.

При сравнении факторов, которые будут больше всего влиять на маркетинговую деятельность, и факторов, к которым меньше всего готовы, выявилось три проблемы:

1) Взрывной рост объема данных – многие просто не знают, что с ними делать.

2) Социальные сети – не умеют работать с ними.

3) Разнообразие каналов связи и устройств.

Чтобы приспособиться к трудностям и трансформировать сложности в новые возможности 73% опрошенных ответили, что готовы инвестировать в технологии управления информацией, 69% — в сбор и хранение данных, 65% - в анализ информации.

Кроме того, по словам респондентов, компании готовы повышать применение цифровых технологий:

Внедрению новых информационных технологий мешает, прежде всего, их высокая стоимость и отсутствие уверенности в окупаемости. Около половины респондентов также назвали проблемы с внедрением инструментов и недостаток навыков у потенциальных пользователей.

Что касается измерений эффективности маркетинга, на первом месте стоит ROI.

Секцию продолжил Михаил Левин, Яндекс, который рассказал о прогнозировании кликов в контекстной рекламе.

Задача Яндекса – это не только показать объявление, по которому кликнут пользователи, но и выбрать именно то, которое принесет наиболее высокий доход. В каждом из блоков идет аукцион – CPM (вероятность клика умножить на ставку) - Яндекс оценивает вероятность клика, сколько за него получит денег.

Очень важно правильно прогнозировать цену клика. Это можно сделать несколькими способами:

- Хранить статистику показов объявления – но это примитивный подход, вероятность будет сильно зависеть от запроса,

- Можно добавить к этому учет поискового запроса.

Но реализовать такой подход невозможно, т.к. получается слишком много данных.

- Хорошая альтернатива поисковому запросу – ключевая фраза. Данных получается также немало, но ими можно управлять.

Но данную модель также можно улучшить. Например, у нас есть объявление о продаже iPhone, ключевая фраза iPhone и запросы “iphone 5”, “iphone 4” и “iphone инструкция”. Одно слово или даже цифра может сильно повлиять на вероятность запроса, и тут приходится использовать «хвост» запроса. Их много, но нужно выбирать самые важные.

При прогнозировании клика нередко возникают проблемы - например, объявление новое и по нему нет статистики. В данном случае следует посмотреть на статистику всего домена. Если же и сам домен новый, то необходимо использовать релевантностные факторы.

Как смешивать статистику? Примеры формул:

Кроме статистических факторов можно учитывать регион, номер страницы, время дня, день недели, релевантность текста объявления... и копить статистику, а потом делать срезы. Но это нецелесообразно: количество срезов будет расти, но какой бы срез не взять, по нему будет мало кликов, что не позволит сделать выводы.

От обычных статистических подсчетов переходим к машинному обучению. Но как определить, стало ли лучше? Можно использовать метрики:

Но даже если метрики показывают, что стало лучше, на самом деле это может быть не совсем так: если мы ориентируемся на исторические данные – это может быть совпадение, до и после запуска формулы может измениться поведение пользователей и рекламодателей. Кроме того, некоторые метрики меняются очень медленно, а полгода – слишком большой срок для внесения изменений.

В итоге получается новая сложная функция качества, постепенно меняющаяся:

Новый алгоритм запускается на 2% пользователей, проверяется отличается ли эксперимент от контроля, а дальше принимается решение.

Станислав Видяев, Google, рассказал об инструменте Universal Analytics.

Основная идея нового инструмента – это переход от сессий к пользователям

Вечная проблема веб-аналитики – это отслеживание по кукам. Куки принадлежат к конкретному устройству и их сложно передавать между ними - до сегодняшнего дня не существовало большой индустриальной платформы (к тому же бесплатной), которая бы позволяла это делать. Проблема усугубляется тем, что между браузерами куки тоже не передаются, и в итоге у нас получается огромное количество уникальных посетителей. И наконец, есть еще одна проблема – невозможность отследить действия пользователей в офлайне.

Что делает в этом отношении Google Analytics. В рамках стандартной версии есть серия отчетов – многоканальные последовательности. И тут можно посмотреть, с каких источников приходил пользователь, и где конвертировался. Но вся эта последовательность выстраивается в рамках 1 куки. Тут мы опять сталкиваемся с ограничением – у нас есть возможность провести атрибуцию только в рамках 1 устройства и 1 браузера.

Инструмент Universal Analytics будет работать на другой куке. Так выглядит стандартная кука:

Universal Analytics использует новые куки + User ID. Преимущества: все реферальные данные хранятся на сервере Google, что позволяет быстрее их обрабатывать.

Разница между старым и новым подходом. Например, пользователь зашел на сайт со смартфона, потом 2 раза с ноутбука(зарегистрировался и совершил покупку), и еще раз со смартфона. В рамках стандартной куки – это три разных пользователя.

В рамках Universal Analytics - это 2 разных пользователя. Если пользователь идентифицирует себя, куки переписываются, и мы получаем всю историю взаимодействий пользователя. Если пользователь себя не идентифицирует, это посещение выпадает из Universal Analytics.

Как Universal Analytics позволит связать онлайн и офлайн: все User ID через API можно будет забрать себе в CRM, где их можно будет связать с Client ID. Когда произойдет офлайн действие, через особый Measurement-протокол можно будет отдавать эти действия в качестве метрик Google Analytics в формате CSV в Universal Analytics.

Случилось что-то важное? Поделитесь новостью с редакцией.


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Поделиться 
Поделиться дискуссией:
Отправить отзыв
ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
SEOnews и Serpstat запускают конкурс для интернет-маркетологов
Eugene Lata
51
комментарий
0
читателей
Полный профиль
Eugene Lata - Отметил, спасибо.
Как построить качественную ссылочную массу сайта
Айрат Рахимзянов
39
комментариев
0
читателей
Полный профиль
Айрат Рахимзянов - Спасибо Кирилл. Сейчас восстановилась работа сервиса: take.ms/ttXrw
«Я оптимизировал сайт, а он не в ТОП! Что делать?»
Павел Горбунов
7
комментариев
0
читателей
Полный профиль
Павел Горбунов - Как можно в инструменте tools.pixelplus.ru/tools/text-natural сравнить текст со страницы конкурента и со своей страницы? Я вижу возможность только для проверки одного урла.
Влияние HTTPS на ранжирование региональных поддоменов в Яндексе
Екатерина Иванова
1
комментарий
0
читателей
Полный профиль
Екатерина Иванова - Посмотрите на сколько упал трафик и на сколько потом вырос:упал на 10-20% на 1 месяц, а вырос в итоге в 5 раз. Одним мартовским трафиком всё падение перекрыли. Или можно ждать Яндекс неопределённое количество времени со стартовым уровнем трафика. Упущенные возможности и всё-такое.
Мир глазами поисковых систем
Александр Рунов
5
комментариев
0
читателей
Полный профиль
Александр Рунов - Какой регион, если не секрет? В Мск, в ряде ВК тематик (в тех же "окнах" или "колесах"), без работы с внешними факторами по ВЧ запросам в ТОП не выплывешь. Хотя в большинстве направлений вполне реально.
Google.ru внесли в реестр запрещенных сайтов
Гость
1
комментарий
0
читателей
Полный профиль
Гость - Гон, все работает и будет работать. Да и пусть банят, будет как с рутрекером.
Интеграция call tracking и CRM: углубленный анализ данных о звонках и продажах
Денис
2
комментария
0
читателей
Полный профиль
Денис - Какой смысл вообще в облачных CRM, обрезанный фугкционал, свое дописать невозможно, слив клиентов другим компаниям. Серверные бесплатные CRM куда надежней и кастамизируй как хочешь.
SEMrush: факторы ранжирования в Google в 2017 году
Анна Макарова
292
комментария
0
читателей
Полный профиль
Анна Макарова - Уважаемый S1, я тоже понимаю, что есть такие люди, которые заметив допущенную неточность несутся на всех парусах продемонстрировать "силу" своего ума. Спасибо вам за пристальное внимание. Это поможет нам быть лучше.
Монетизация сайта. Как, когда, сколько?
Ruslan Baybekov
2
комментария
0
читателей
Полный профиль
Ruslan Baybekov - Максим, добавили возможность вывода дохода на Яндекс Деньги и WMR.
Инфографика: самые распространенные SEO-ошибки Рунета
Дмитрий Панфилов
2
комментария
0
читателей
Полный профиль
Дмитрий Панфилов - написано, но не это и не так )
ТОП КОММЕНТАТОРОВ
Комментариев
910
Комментариев
834
Комментариев
554
Комментариев
540
Комментариев
483
Комментариев
373
Комментариев
292
Комментариев
262
Комментариев
219
Комментариев
171
Комментариев
156
Комментариев
137
Комментариев
121
Комментариев
97
Комментариев
97
Комментариев
95
Комментариев
80
Комментариев
77
Комментариев
67
Комментариев
60
Комментариев
59
Комментариев
55
Комментариев
52
Комментариев
51
Комментариев
45

Отправьте отзыв!
Отправьте отзыв!