×
Россия +7 (909) 261-97-71

4 вызова, с которыми сталкиваются аналитики данных

Россия +7 (909) 261-97-71
Шрифт:
0 13077
Подпишитесь на нас в Telegram

Партнерский материал

За последние несколько лет аналитика данных превратилась из модного тренда в обязательный элемент развивающихся компаний. Анализ данных раскрывает новые возможности и точки роста: получив полезные инсайты, можно повысить эффективность как отдельных процессов, так и работу организации в целом. Если в компании нет такой должности, это значит только то, что данные в ней изучают другие люди – маркетологи, менеджеры и т.д.

Работа с большими объемами сырых данных связана с постоянным поиском новых инструментов, требующих специальных знаний. Но так как аналитикой данных занимается далеко не всегда аналитик (а иногда маркетолог или даже PR-менеджер), и таких специалистов редко много в штате, человек оказывается один на один со своими вопросами и проблемами.

В этой статье мы разберем, какие именно трудности возникают в работе аналитиков, и предложим решения.

Статья будет полезна тем, кто:

  • хочет стать аналитиком. Если вы давно хотите попробовать себя в анализе данных, но никак не решаетесь, в статье вы узнаете, чем аналитик занимается на ежедневной основе и какими инструментами он должен владеть.
  • уже работает аналитиком. Если вы уже работаете аналитиком, но чувствуете, что могли бы выполнять свою работу лучше, в статье вы узнаете, как это сделать.
  • сталкивается с анализом данных в работе. Если вы не аналитик, но вам приходится работать с данными, в статье вы найдете информацию, которая поможет упорядочить знания и справиться с возникающими проблемами.

Нехватка знаний в математике и статистике

Несмотря на пул инструментов, доступных для анализа, знание математики и статистики, а также наличие аналитического мышления повышают шансы стать высокоуровневым специалистом.

Если речь идет об анализе эффективности сайта, знание статистики поможет правильно классифицировать пользователей, избежать критических погрешностей в A/B-тестированиях и отделить ненужные данные низкого качества, оставляя только необходимые. А фундамент для успешного освоения статистики формирует математика.

Нехватка базовых знаний может негативно сказаться на скорости выполнения задач и результате в целом. Полностью исключить ошибки невозможно, однако можно минимизировать их количество.

Пример

Для проведения A/B-тестирования веб-аналитику необходимо не только «задать два разных цвета для кнопки», но и сформировать правильную гипотезу, верно сегментировать пользователей и исключить все погрешности и возможные ошибки в анализе результатов тестирования. Для этого и нужна статистика.

Решение

Изучение статистики в целом поможет проводить более качественные A/B-тесты. Углубленные знания математики и статистики с примерами применения в реальных задачах можно получить в рамках специализированного курса «Аналитик данных» от SkillFactory.

Проблемы со сбором разнородных данных

Для качественного анализа данных важно, чтобы на каждом этапе присутствовало минимальное количество ошибок. Перед сбором данных аналитику стоит тщательно продумать, откуда и как будет собираться информация. Далее ему стоит решить, как получить данные – вручную или с помощью алгоритма. Проблема заключается в том, что данные часто поступают из разных источников и в разных форматах, на ручной сбор уходит слишком много времени и сил, а многие аналитики не умеют использовать алгоритмы для автоматизированного сбора данных.

Пример

Например, аналитику нужно следить за эффективностью интернет-магазина, его упоминаниями в сети и сайтами-конкурентами. В таком случае на сбор данных вручную уйдет слишком много времени и сил.

Решение

Решением станет автоматический парсинг данных с помощью Python. Аналитик сможет создать алгоритм, который сам найдет и добавит в базу уже конвертированные данные, с которыми будет удобно работать.

Сложности в работе с базами данных

Аналитикам приходится работать с большим количеством данных, в которых запросто можно «утонуть». Практически всегда на начальном этапе аналитик имеет дело с сырой информацией. Сначала данные нужно «очистить» – проверить на дублирование, удалить лишние, устаревшие, противоречивые и некачественные – и привести в единообразный вид.

В качестве примера можно взять email-рассылки, которые есть у многих компаний. Часть пользователей, подписавшихся на рассылку, неверно написали email-адрес, другие – подписались дважды, сменив электронный адрес, а третьи оформили подписку давно и уже не пользуются тем почтовым ящиком. Если данные не очистить, эти, казалось бы, небольшие недочеты могут привести к тому, что специалист получит искаженную картину происходящего, например, посчитает неэффективной рассылку, которая на самом деле хорошо «зашла» клиентам. Неправильные выводы в этом случае могут привести к стратегически неверным решениям и, как следствие, к падению эффективности работы компании.

Пример

Приведем еще один пример. Аналитику мобильного приложения для тренировок поступило задание: исследовать поведение пользователей на этапе обучения и понять, влияет ли прохождение этого шага на частоту и величину выплат пользователей.

Решение

Для нахождения разницы между процентом пользователей, просмотревших обучение и совершившихся оплату, и тех, кто не прошел его до конца, нужно использовать данные из БД PostgreSQL и провести их анализ с помощью Python. После получения данных аналитику стоит провести их обзор и преобразование, выделить группы/когорты, рассчитать значения для каждой группы и сделать датафреймы, определить разницу в значениях.

Оперативный анализ и визуализация данных

Следующий шаг – анализ данных. Основная проблема заключается в том, что анализировать данные нужно как можно быстрее – чем раньше получены результаты, тем быстрее можно внедрить решение. К тому же некоторые данные быстро устаревают.

Помимо этого, данные не всегда удается визуализировать таким образом, чтобы донести до руководства все инсайты, полученные в ходе анализа. Сами по себе цифры лишены смысла, осмысленными их делает интерпретация.

От того, насколько убедительно будут представлены таблицы, графики и дашборды, зависит то, удастся ли аналитику донести до начальства текущее состояние и проблемы, над которыми нужно работать. Важно подобрать подходящую форму визуализации, в которой будут учтены все тенденции, нюансы и детали. К сожалению, визуализация данных – трудоемкий процесс, если делать все вручную.

Пример

Аналитик, работающий в онлайн-кинотеатре, может оказаться в следующей ситуации. Например, дела в компании идут хорошо: сервис набирает популярность, количество аудитории и платных подписчиков растет. И тут ему приходит задача: подготовить отчет для инвесторов о том, влияют ли просмотры трейлеров и рекомендаций на решение клиента о покупке.

Решение

Чтобы проанализировать показатели, нужно посчитать с помощью Python и сравнить по когортам конверсию в покупку двух типов пользователей: тех, кто видел и не видел трейлеры. Результаты можно визуализировать с помощью библиотек Matplotlib и Seaborn либо в Google Таблицах (Excel).

Вывод

Самое важное в любой области – систематизированные знания и сильная база, без которой работа может превратиться в мучение. Для аналитиков такой базой являются математика и статистика, умение работать с Excel/Google Таблицами, SQL и Python, способность выбрать подходящий для конкретной ситуации инструмент, а также понимание того, как визуализировать полученную информацию. Обычно теории недостаточно, требуется практика. Конечно, ее можно приобрести уже на рабочем месте, однако тогда ошибок в работе не избежать.

Систематизировать свои знания и попрактиковаться в аналитике без страха совершить ошибку можно в рамках фундаментального курса по аналитике данных. SkillFactory как раз запускает такой курс, в котором начинающие или уже работающие аналитики смогут получить все знания, необходимые для работы. До 15 октября записаться на курс можно со скидкой в 30%, достаточно при регистрации указать промокод SEOnews.

Есть о чем рассказать? Тогда присылайте свои материалы Марине Ибушевой


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
Как ИИ усиливает маркетинг и помогает общаться с пользователем
Иван
1
комментарий
0
читателей
Полный профиль
Иван - Классная статья, забрал Хотелось бы услышать еще от эксперта мнение про модели в таком случае и дисперсию
Тренды e-commerce 2026: рынок ждет отток с маркетплейсов?
Арина
1
комментарий
0
читателей
Полный профиль
Арина - Мы пробовали разные сервисы, но уже давно используем этот сервис tryon.mall-er.com у них есть и Визуальный поиск и Виртуальная примерка. Мы пользуемся Виртуальной примеркой очков и поиском и внедрили себе на сайт, сейчас порядка 80% нашего трафика с удовольствием пользуются данными функциями.
SEO-анализ сайта – новый сервис для технического аудита сайта
Олег Алексеев
1
комментарий
0
читателей
Полный профиль
Олег Алексеев - Сюда t.me/obivaaan или сюда t.me/olegalexeyev
Что будет с SEO в 2026: эксперты рынка подводят итоги и делают прогнозы на этот год
Марал Гаипова
142
комментария
0
читателей
Полный профиль
Марал Гаипова - Дмитрий, спасибо, эксперты и правда - топ)
Мошенники придумали новую схему обмана с дипфейками
Константин Овсиенко
1
комментарий
0
читателей
Полный профиль
Константин Овсиенко - Мошенники в телеграм 2202206115977659 Юлия Владимировна К.
Где взять данные о GEO-видимости: 9 инструментов в одной статье
Евгений Молдовану
1
комментарий
0
читателей
Полный профиль
Евгений Молдовану - Хороший список, но используя подобные чекеры помните, что в GEO важен консенсус и если его нет, то на каждый запрос может формироваться свой ответ.
Высокая позиция в Яндексе: гарантированный билет в нейроответы или миф?
Старый сеошник
7
комментариев
0
читателей
Полный профиль
Старый сеошник - Так наивно повелся на заголовок и обещание исследования на 5 млн запросах. А попал на частные мнения трех сеошников с общими формулировками и аргументами, которые гуляют по интернету уже полгода почти)
Лучшие бесплатные редакторы видео
Сергей
22
комментария
0
читателей
Полный профиль
Сергей - По-моему, тут в минусах явно не хватает пункта о наложении водяного знака - можно все минусы стерпеть, но если у видео будет водяной знак, то зачем вообще таким приложением пользоваться? Если только для тестирования. А вы много тестируете? Вряд ли. Поэтому непонятно почему авторы статьи не внесли самый важный пункт в список недостатков. Лишь пару раз это всплывает во писаниях, а должно быть везде!
Стратегии в Mobile: как построить эффективную коммуникацию
Потаппотейтос
1
комментарий
0
читателей
Полный профиль
Потаппотейтос - у вас что, циклическая ссылка на странице? дальше оптимизацию смотреть?
Лучшие шаблоны сайтов на 1С-Битрикс: обзор топ-10 готовых решений
Гость
1
комментарий
0
читателей
Полный профиль
Гость - Как только увидел в первых двух "лучших" Аспро и INTEC дальше читать не стал. О первых очень наслышан, со вторым имел годовой опыт счастливого общения после покупки шаблона.
ТОП КОММЕНТАТОРОВ
Комментариев
910
Комментариев
834
Комментариев
554
Комментариев
540
Комментариев
483
Комментариев
393
Комментариев
373
Комментариев
262
Комментариев
249
Комментариев
171
Комментариев
156
Комментариев
142
Комментариев
127
Комментариев
121
Комментариев
100
Комментариев
97
Комментариев
97
Комментариев
96
Комментариев
80
Комментариев
77
Комментариев
74
Комментариев
67
Комментариев
66
Комментариев
60
Комментариев
59

Отправьте отзыв!
Отправьте отзыв!