Россия+7 (495) 960-65-87

Moscow.Digital: как таргетировать онлайн-рекламу по геоданным

Россия+7 (495) 960-65-87
Шрифт:
0 4611
Moscow.Digital – это концепция регулярных и открытых митапов для специалистов онлайн-маркетинга. Площадки, сервисы, агентства, рекламодатели обсуждают насущные вопросы контекстной и таргетированной рекламы, ретаргетинга, RTB, веб-аналитики. Организатором встреч выступает система автоматизации интернет-маркетинга Marilyn.

Каждой теме отводится три встречи: первые две для погружения в тему, третья – для обсуждения и подведения итогов.

Представляем обзор одного из вводных митапов по практическому использованию офлайн-данных о пользователях для таргетинга онлайн-рекламы, который состоялся в начале апреля 2018.

Открыл встречу Виталий Щербаков, руководитель по машинному обучению и анализу данных в компании Мегафон, который представил доклад о монетизации больших данных.

Мегафон собирает пять типов данных об абонентах:

  • Демографические (пол, возраст).
  • Характер потребления (ключевые интересы).
  • Геовременные данные (данные по базовым станциям, онлайн-геоданные).
  • Круг общения (информация о звонках и смс).
  • Платежеспособность (данные по ARPU, траты на услуги связи и прочие сервисы).

Но какой бы крутой алгоритм не был, если на входе в него запихать сырые неочищенные данные, на выходе вы не сможете получить что-то стоящее. Так как основная тема этой серии митапов – использование геоданных, Виталий подробно рассказал, как они используют их.

Работа с потоками абонентов:

  • Извлекаемые инсайты. Информация о посещаемости и профилированию посетителей в конкретных точках: сколько людей проходят через точку, кто они, когда посещают эту точку.
  • Примеры use кейсов: оптимизация расположения точек продаж и базовых станций.

Работа с сегментами абонентов:

  • Извлекаемые инсайты. Информация о паттернах перемещения и потребления для конкретных сегментов населения: куда часто ходят эти люди, когда они туда приходят, какие черты поведения характерны для них.
  • Примеры use кейсов: оптимизация предложения телеком-услуг, выявление домохозяйств.

Далее Виталий перешел к описанию процесса разработки предсказательных и описательных моделей. Основные этапы создания:

  • Самый трудоемкий этап – подготовка данных (сбор и очистка, формализация задач),
  • Построение модели (генерация гипотез и возможных переменных),
  • Применение результатов/тестирование по результатам которого модель может запуститься в реализацию.

Завершил выступление Виталий несколькими кейсами по применению предиктивных и описательных моделей:

Кейс 1. Next best action. Ситуация следующая: у отдела обработки данных в большом телекоме появляется слишком много моделей. Все эти модели распространяются на всю базу, и периодически на одного абонента приходится по несколько предложений. Если спамить абонентов офферами по всем каналам, вряд ли им это понравится, следовательно, нужно выбрать, что конкретно предложить, с какой скидкой, по какому каналу и в какое время.

Кейс 2. Умная реакция. Все телекомы работают с оттоками. Когда у конкурента выходит новый тарифный план, модель показывает склонность абонента уйти на этот тариф.

Кейс 3. Лидеры мнений. Лидером мнений будет тот человек, который в группе людей, например, домохозяйстве, при уходе к конкурентам может увести за собой всех остальных. Модели помогают вести работу именно с лидером мнений, сокращая стоимость контакта.

Следующий доклад представил Алексей Князев, сооснователь компании Watcom, с рассказом о том, как можно объединить данные о посещаемости офлайн-магазина и данные о посещаемости сайта.

Компания Watcom занимается подсчетом и анализом поведения пользователей в торговых точках, так называемый, Shopping Index:

  • Кто является посетителем.
  • Какие магазины посещает.
  • Сколько денег тратит.
  • Как много времени проводит.
  • Что ему нравится.

Shopping Index позволяет:

  • Обосновать эффективность расходования и защитить маркетинговый бюджет перед инвесторами/клиентами.
  • Оперативно оценить эффективность акций и мероприятий.
  • Отследить переход офлайн-трафика в онлайн трафик и наоборот.

Подобные технологии могут быть полезны в ряде случаев:

Кейс 1. Если вы хотите провести рекламную кампанию, которая должна простимулировать посещение торговой точки, то необходимо знать, что происходит на рынке. На примере ниже можно увидеть, что дает подобное знание:

Князев_обзор_1.PNG

В целом посещаемость не изменилась, но на фоне падения рынка, фиксируется рост.

И обратная ситуация, есть рост посещаемости, но в то же время и весь рынок растет, и, возможно, акция и не при чем:

Князев_обзор-2.PNG

Кейс 2. Оценка потенциала локации. С Shopping Index можно определить наиболее перспективные локации для размещения точек ретейла или ТЦ. Данные позволяют определить особенности профилей посещаемости локаций в зависимости от их характеристик в будние и выходные дни.

Кейс 3. Профили городов по покупательской активности с учетом праздников, выходных, погоды, местных событий и т.д.

Князев_обзор-3.PNG

Закрыл митап Андрей Корохов, менеджер по инновациям рекламной группы Publicis, который поделился опытом работы с потребностями клиентов (в данном случае крупных FMCG-корпораций).

Актуальные потребности клиентов можно разделить на два тренда:

  • Поиск новых данных. Базовых онлайн-сегментов уже недостаточно, нужно искать офлайн-аудиторию для закупки в онлайн. Кооперация с ретейлом – клиенты ищут возможности использовать ритейл для более эффективного таргетинга.
  • Коммуникации здесь и сейчас. Важно минимизировать время между рекламным контактом и моментом покупки.

Механики, которые отвечают потребностям клиентов:

  • Геоданные (рядом с магазином (супергео), в магазине).
  • Данные о покупках.

Для геоидентификации пользователей внутри магазина можно использовать несколько решений. Wi-Fi решение будет самым оптимальным по охвату, цене и скорости воплощения.

Корохов_обзор-1.PNG

Пример использования таких данных на практике:

В торговой точке, где проводилось мероприятие, был установлен Wi-Fi роутер. Все посетители, которые к нему подключились, были зафиксированы системой. Спустя неделю этим пользователям, а также настроенной на их основе Look-alike аудитории, был показан баннер компании.

Таким образом ретейлеры могут показывать пользователям конкретные скидки и предложения, предназначенные для определенного сегмента, например, участникам программы лояльности и т.д.

Итог:

  • Большим FMCG-клиентам нужен размах, большие и охватные истории. Им не подходят нишевые офлайн-решения.
  • Офлайн-данные могут быть использованы в сложных категориях, которые не так просто охватить обычными средствами коммуникации (детское питание, товары для животных и т.д.).
  • FMCG-игроки активно используют офлайн-решения с широким охватом от крупных игроков вроде Google и Яндекса.

Заключительный митап серии состоится 27 апреля и будет проходить в формате дискуссии. Представители рекламных площадок, агентств, крупных рекламодателей и ритейл-сетей поделятся мнениями о геоданных в интернет-продвижении.

Участие бесплатное, нужна регистрация. 


(Нет голосов)
Читайте нас в Telegram - digital_bar

Есть о чем рассказать? Тогда присылайте свои материалы Даше Калинской


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
    ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
    Рейтинг Известности 2018: старт народного голосования
    Михаил Р
    1
    комментарий
    0
    читателей
    Полный профиль
    Михаил Р - 1. Demis 2. кокс 3. Ашманов 4. Скобеев 5. Digital Strategy
    Сколько ссылок помогут продвинуть молодой сайт
    Павел Андрейчук
    0
    комментариев
    0
    читателей
    Полный профиль
    Павел Андрейчук - Дело в том, что вряд ли в ваших платных "качественных" кейсах найдётся хоть пару % действительно новой и полезной информации которой бы не было на общедоступных источниках.
    Рейтинг Известности 2018: второй этап народного голосования
    Константин Сокол
    3
    комментария
    0
    читателей
    Полный профиль
    Константин Сокол - Кто был ответственный за дизайн таблицы голосования? Копирайтер?
    Кейс: вывод лендинга по изготовлению флагов на заказ в ТОП 1 по Санкт-Петербургу
    utka21
    5
    комментариев
    0
    читателей
    Полный профиль
    utka21 - Кейс как кейс. Для некоторых станет вполне возможно полезным. ( Для конкурентов точно) . А вот с комментариями , что то пошло не так )
    Google обошел Яндекс по популярности в России в 2018 году: исследование SEO Auditor
    Рамблер
    1
    комментарий
    0
    читателей
    Полный профиль
    Рамблер - Вот вроде отечественный - это сказано верно.. «Я́ндекс» — российская транснациональная компания, зарегистрированная в Нидерландах. Так говорится в Википедии. И с хрена ли ОТЕЧЕСТВЕННЫЙ поисковик зарегистрирован в Европе? И где платится основная часть налогов? Ну-ууу, точно не в России. И если запахнет жаренным, то был Яндекс и нет Яндекса!
    Обзор популярных CMS: плюсы и минусы
    Гость
    1
    комментарий
    0
    читателей
    Полный профиль
    Гость - У Битрикса техническое seo сильно страдает, чтоб оно там было нормальным придется все переделать. Безопасность у Битрикса тоже низкая, особено если надо дорабатывать функционал, как только правиться функционал у Битрикс , то уровень ее безопасности определяет тот разработчик , который этим занимается. Самые безопасные движки те, что нет в общем доступе и где нельзя ничего редактировать в коде. =)
    Как использовать Python для LSI-копирайтинга
    Evgeny Montana
    6
    комментариев
    0
    читателей
    Полный профиль
    Evgeny Montana - спасибо)
    Стартовал сбор заявок на участие в рейтинге «Известность бренда SEO-компаний 2018»
    Артем Первухин
    1
    комментарий
    0
    читателей
    Полный профиль
    Артем Первухин - Make KINETICA Great Again!
    Инструкция: настраиваем цели Яндекс.Метрики через Google Tag Manager
    Roman Gorkunenko
    1
    комментарий
    0
    читателей
    Полный профиль
    Roman Gorkunenko - Здравствуйте. Подскажите, пожалуйста, можно с айпи метрики вытащить среднюю стоимость клика по утм меткам? В метрике есть такой шаблон tags_u_t_m, но он не совместим с меткой директа, у них разные префиксы.
    Прощай, тИЦ! Яндекс переходит на новый показатель качества
    Дмитрий Кондратенко
    3
    комментария
    0
    читателей
    Полный профиль
    Дмитрий Кондратенко - PR уже год как отменили, ТИЦ пол года не обновляется... Вы или "не те книги читали", или Вас кинули ушлые СЕОшники... www.internet-reklama.pp.ua
    ТОП КОММЕНТАТОРОВ
    Комментариев
    910
    Комментариев
    834
    Комментариев
    554
    Комментариев
    540
    Комментариев
    483
    Комментариев
    373
    Комментариев
    341
    Комментариев
    262
    Комментариев
    243
    Комментариев
    171
    Комментариев
    156
    Комментариев
    137
    Комментариев
    121
    Комментариев
    99
    Комментариев
    97
    Комментариев
    97
    Комментариев
    96
    Комментариев
    80
    Комментариев
    67
    Комментариев
    67
    Комментариев
    60
    Комментариев
    59
    Комментариев
    57
    Комментариев
    55
    Комментариев
    54

    Отправьте отзыв!
    Отправьте отзыв!