×
Россия +7 (495) 139-20-33

Moscow.Digital: как таргетировать онлайн-рекламу по геоданным

Россия +7 (495) 139-20-33
Шрифт:
0 5612
Moscow.Digital – это концепция регулярных и открытых митапов для специалистов онлайн-маркетинга. Площадки, сервисы, агентства, рекламодатели обсуждают насущные вопросы контекстной и таргетированной рекламы, ретаргетинга, RTB, веб-аналитики. Организатором встреч выступает система автоматизации интернет-маркетинга Marilyn.

Каждой теме отводится три встречи: первые две для погружения в тему, третья – для обсуждения и подведения итогов.

Представляем обзор одного из вводных митапов по практическому использованию офлайн-данных о пользователях для таргетинга онлайн-рекламы, который состоялся в начале апреля 2018.

Открыл встречу Виталий Щербаков, руководитель по машинному обучению и анализу данных в компании Мегафон, который представил доклад о монетизации больших данных.

Мегафон собирает пять типов данных об абонентах:

  • Демографические (пол, возраст).
  • Характер потребления (ключевые интересы).
  • Геовременные данные (данные по базовым станциям, онлайн-геоданные).
  • Круг общения (информация о звонках и смс).
  • Платежеспособность (данные по ARPU, траты на услуги связи и прочие сервисы).

Но какой бы крутой алгоритм не был, если на входе в него запихать сырые неочищенные данные, на выходе вы не сможете получить что-то стоящее. Так как основная тема этой серии митапов – использование геоданных, Виталий подробно рассказал, как они используют их.

Работа с потоками абонентов:

  • Извлекаемые инсайты. Информация о посещаемости и профилированию посетителей в конкретных точках: сколько людей проходят через точку, кто они, когда посещают эту точку.
  • Примеры use кейсов: оптимизация расположения точек продаж и базовых станций.

Работа с сегментами абонентов:

  • Извлекаемые инсайты. Информация о паттернах перемещения и потребления для конкретных сегментов населения: куда часто ходят эти люди, когда они туда приходят, какие черты поведения характерны для них.
  • Примеры use кейсов: оптимизация предложения телеком-услуг, выявление домохозяйств.

Далее Виталий перешел к описанию процесса разработки предсказательных и описательных моделей. Основные этапы создания:

  • Самый трудоемкий этап – подготовка данных (сбор и очистка, формализация задач),
  • Построение модели (генерация гипотез и возможных переменных),
  • Применение результатов/тестирование по результатам которого модель может запуститься в реализацию.

Завершил выступление Виталий несколькими кейсами по применению предиктивных и описательных моделей:

Кейс 1. Next best action. Ситуация следующая: у отдела обработки данных в большом телекоме появляется слишком много моделей. Все эти модели распространяются на всю базу, и периодически на одного абонента приходится по несколько предложений. Если спамить абонентов офферами по всем каналам, вряд ли им это понравится, следовательно, нужно выбрать, что конкретно предложить, с какой скидкой, по какому каналу и в какое время.

Кейс 2. Умная реакция. Все телекомы работают с оттоками. Когда у конкурента выходит новый тарифный план, модель показывает склонность абонента уйти на этот тариф.

Кейс 3. Лидеры мнений. Лидером мнений будет тот человек, который в группе людей, например, домохозяйстве, при уходе к конкурентам может увести за собой всех остальных. Модели помогают вести работу именно с лидером мнений, сокращая стоимость контакта.

Следующий доклад представил Алексей Князев, сооснователь компании Watcom, с рассказом о том, как можно объединить данные о посещаемости офлайн-магазина и данные о посещаемости сайта.

Компания Watcom занимается подсчетом и анализом поведения пользователей в торговых точках, так называемый, Shopping Index:

  • Кто является посетителем.
  • Какие магазины посещает.
  • Сколько денег тратит.
  • Как много времени проводит.
  • Что ему нравится.

Shopping Index позволяет:

  • Обосновать эффективность расходования и защитить маркетинговый бюджет перед инвесторами/клиентами.
  • Оперативно оценить эффективность акций и мероприятий.
  • Отследить переход офлайн-трафика в онлайн трафик и наоборот.

Подобные технологии могут быть полезны в ряде случаев:

Кейс 1. Если вы хотите провести рекламную кампанию, которая должна простимулировать посещение торговой точки, то необходимо знать, что происходит на рынке. На примере ниже можно увидеть, что дает подобное знание:

Князев_обзор_1.PNG

В целом посещаемость не изменилась, но на фоне падения рынка, фиксируется рост.

И обратная ситуация, есть рост посещаемости, но в то же время и весь рынок растет, и, возможно, акция и не при чем:

Князев_обзор-2.PNG

Кейс 2. Оценка потенциала локации. С Shopping Index можно определить наиболее перспективные локации для размещения точек ретейла или ТЦ. Данные позволяют определить особенности профилей посещаемости локаций в зависимости от их характеристик в будние и выходные дни.

Кейс 3. Профили городов по покупательской активности с учетом праздников, выходных, погоды, местных событий и т.д.

Князев_обзор-3.PNG

Закрыл митап Андрей Корохов, менеджер по инновациям рекламной группы Publicis, который поделился опытом работы с потребностями клиентов (в данном случае крупных FMCG-корпораций).

Актуальные потребности клиентов можно разделить на два тренда:

  • Поиск новых данных. Базовых онлайн-сегментов уже недостаточно, нужно искать офлайн-аудиторию для закупки в онлайн. Кооперация с ретейлом – клиенты ищут возможности использовать ритейл для более эффективного таргетинга.
  • Коммуникации здесь и сейчас. Важно минимизировать время между рекламным контактом и моментом покупки.

Механики, которые отвечают потребностям клиентов:

  • Геоданные (рядом с магазином (супергео), в магазине).
  • Данные о покупках.

Для геоидентификации пользователей внутри магазина можно использовать несколько решений. Wi-Fi решение будет самым оптимальным по охвату, цене и скорости воплощения.

Корохов_обзор-1.PNG

Пример использования таких данных на практике:

В торговой точке, где проводилось мероприятие, был установлен Wi-Fi роутер. Все посетители, которые к нему подключились, были зафиксированы системой. Спустя неделю этим пользователям, а также настроенной на их основе Look-alike аудитории, был показан баннер компании.

Таким образом ретейлеры могут показывать пользователям конкретные скидки и предложения, предназначенные для определенного сегмента, например, участникам программы лояльности и т.д.

Итог:

  • Большим FMCG-клиентам нужен размах, большие и охватные истории. Им не подходят нишевые офлайн-решения.
  • Офлайн-данные могут быть использованы в сложных категориях, которые не так просто охватить обычными средствами коммуникации (детское питание, товары для животных и т.д.).
  • FMCG-игроки активно используют офлайн-решения с широким охватом от крупных игроков вроде Google и Яндекса.

Заключительный митап серии состоится 27 апреля и будет проходить в формате дискуссии. Представители рекламных площадок, агентств, крупных рекламодателей и ритейл-сетей поделятся мнениями о геоданных в интернет-продвижении.

Участие бесплатное, нужна регистрация. 


(Голосов: 5, Рейтинг: 5)
Читайте нас в Telegram - digital_bar

Есть о чем рассказать? Тогда присылайте свои материалы Ане Макаровой


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
Что скрывает «Прогноз бюджета Яндекс.Директ»?
Михаил Мухин
14
комментариев
0
читателей
Полный профиль
Михаил Мухин - Здравствуйте! 1-2. Считает стенд. Ссылка на него дана, но могу повторить: online.p-c-l.ru/competition/task/card/id/106. Нажмите на кнопку "Начать" и заранее приготовьте прогноз бюджета Яндекс. Суть расчета: перебор комбинаций всех ставок на всех фразах, построение бюджетных когорт - бюджетов с одинаковым СРС, отбор в каждой когорте бюджета с максимальным количеством кликов и ..., да упорядочивание этих бюджетов по мере возрастания СРС, причем берем не все, а с фиксированным шагом. 3. Гугл считается через поправочные коэффициенты. Мы перевариваем океан данных и представляем их. На удивление, получается не менее, хотя и не более точно, как и прогноз Яндекс. Конечно, нужно понимать, что это очень примерные прикидки, фактически перевод неточного прогноза Яндекс в удобочитаемую форму, не больше. Самое интересное начинается, когда применяешь метод бюджетных когорт к измерению показателей фраз на реальной рекламной кампании в режиме 48х7. Первые результаты очень хорошие. Если хотите присоединиться к бесплатному тестированию, напишите Эльвире r-support@r-broker.ru. В теме укажите "хочу присоединиться к тестам Умного управления рекламой"
#SEOnews14: мы празднуем – вы получаете подарки!
Анна Макарова
362
комментария
0
читателей
Полный профиль
Анна Макарова - Гость, добрый день! С победителями мы связывались сразу после розыгрыша. Если мы вам не написали, значит, ваш номер не выпал. Но не расстраивайтесь, у нас обязательно будут новые розыгрыши!
Ссылочное продвижение локальных сайтов: ТОП худших SEO-методов
demimurych
5
комментариев
0
читателей
Полный профиль
demimurych - о господи. это для регионального сайта? в яндексе? где у сайта по региону конкурентов меньше чем выдачи на двух страницах из которых перваш это реклама москвы? потешно ей богу. ктото чего то не понеимает.
Как ускорить сайт на WordPress, чтобы получить 100/100 в Google PageSpeed Insights
Георгий
1
комментарий
0
читателей
Полный профиль
Георгий - Все что рекомендуется в этой статье есть у w.tools. Ни разу не пожалел что подключился. Своя CDN сеть, кеш статики и динамики, минификация js\css и кешируемого html, оптимизация всех типов картинок и еще куча всего полезного. Сайт летает и я не знаю проблем. Могу рекомендовать от души.
От мечты стать юристом к собственному SMM-агентству. Как найти себя в современном цифровом мире
Виктор Брухис
5
комментариев
0
читателей
Полный профиль
Виктор Брухис - Статья выглядит так, как пожелали редакторы и интервьюер) Вопросы к интервью подбирал не я)) Хотя, в целом я согласен с вашим видением. А за пожелание удачи большое спасибо!
«Аудит, чтобы ты заплакала…», или Что делать, когда получил сторонний аудит сайта
Евгений
1
комментарий
0
читателей
Полный профиль
Евгений - Воообще, на самом деле здесь двоякое впечатление от таких аудитов. Конечно, для полного глубокого анализа и подготовки рекомендаций по сайту - нужны доступы к системам аналитики и инструментам вебмастера. Но если оценивать подобные аудиты с точки зрения чистого SEO (которое все больше и больше становится лишь малой частью digital-маркетинга, лишь одним из каналов) - они имеют место быть. Но с оговоркой, что они сделаны с учетом анализа конкурентов/отрасли. Современные инструменты и алгоритмы позволяют делать это маркетологам в автоматическом режиме, и даже давать рекомендации - возможностями машинного обучения уже никого не удивишь. Да, полное перечисление "мифического" списка ошибок, построенного по предикативным правилам, да еще и с учетом устаревших особенностей ПС - это явный признак некачественного аудита. В первую очередь потому, что эти "ошибки" следует рассматривать в качестве рекомендаций от ПС (как и говорится в справочнике вебмастера у Яндекса/Google). Однако если эти данные даются с отсылкой на данные о конкурентах, об отрасли, используются методы ML и Natural language processing для обработки исходных данных, кластеризации запросов, классификации страниц/запросов/сайтов, определения структуры документа - такие отчеты имеют право на существование. Но ключевым моментом является то, что подобные инструменты достаточно сложны в разработке, а значит требуют квалифицированных специалистов для их разработки. Которых просто нет у студий рассылающих подобные "сео отчеты". Подобные отчеты по "ошибках" тоже неплохой источник информации, но лишь на 0 этапе анализа сайта. И в принципе, теоретически, возможно почти полное составление "хороших аудитов" без участия маркетолога, на основе лишь открытых данных сайта/внешних источников, но только при соответствующем применении всех современных возможностей анализа данных и рекомендательных систем. И в любом случае подобный "хороший отчет" требует конечного заключения от эксперта.
Как провести анализ содержания страниц товаров и категорий
Никита Седнин
3
комментария
0
читателей
Полный профиль
Никита Седнин - Спасибо!
Как вывести сайт в ТОП 10 Google в 2019 году
Роман
1
комментарий
0
читателей
Полный профиль
Роман - Вот скажите пожалуйста, Мне разработали сайт на мою фирму, www.линк.kz и теперь надо решить, сео продвижение у нас стоит около 25000 - 30000 руб. в месяц, для меня сумма не маленькая стоит ли оно того? или можно просто оптимизировать сайт в плане СЕО и выходить в ТОП за счет трафика?
BDD 2019: Как перестать убивать время на сбор и обработку тонны данных для SEO-аудита
Kosta Bankovski
4
комментария
0
читателей
Полный профиль
Kosta Bankovski - Спасибо за приятные слова! Буду и дальше делиться наработками ;)
Как удвоить выручку за счет продвижения в поиске. Кейс coffee-butik.ru
Максим Боровой
2
комментария
0
читателей
Полный профиль
Максим Боровой - Последний вопрос (извиняюсь за количество) - почему на "В корзину" стоит Nofollow. Осознанно для распределение весов?
ТОП КОММЕНТАТОРОВ
Комментариев
910
Комментариев
834
Комментариев
554
Комментариев
540
Комментариев
483
Комментариев
373
Комментариев
362
Комментариев
262
Комментариев
249
Комментариев
171
Комментариев
156
Комментариев
137
Комментариев
121
Комментариев
107
Комментариев
97
Комментариев
97
Комментариев
96
Комментариев
82
Комментариев
80
Комментариев
77
Комментариев
67
Комментариев
60
Комментариев
59
Комментариев
57
Комментариев
55

Отправьте отзыв!
Отправьте отзыв!