iMetrics 2011: польза веб-аналитики для SEO и SMM: обзор

Россия+7 (495) 960-65-87
Шрифт:
0 2614
В профессиональной секции «Индустриальный взгляд на веб-аналитику. Чем веб-аналитика может быть полезна для SEO, SMM, usability и веб-студий?» представители ведущих российских интернет-компаний раскрыли секреты, как получить данные о действиях пользователей на сайте и страницах в соцсетях, и как применить эти данные на практике.

Первым выступил Анатолий Сергеев (AdLabs) с докладом «Практическое применение веб-аналитики для SEO, веб-студий, SMM: отслеживание эффективности тэгов на сайте, отслеживание флэш-приложений, веб-аналитика для SEO».

http://fotki.yandex.ru/users/lepninka/view/660374?page=7

Вначале Анатолий подробно рассказал, как можно отслеживать поисковый трафик с помощью Google Analytics. Раньше сделать это быстро и просто было достаточно проблематично (приходилось отслеживать показатели нескольких параметров, например, «запросы», источники трафика). Теперь все гораздо удобнее – в GA есть целый раздел посвященный поисковой оптимизации.

Для оценки трафика из соцсетей следует обратить внимание на отчет GA «Соцфункции». Чтобы узнать, кто поделился материалом в соцсетях, можно использовать функцию TrackSocial, где после указания необходимых параметров можно получить следующую информацию:

- активность пользователей;

- как контент распределяется в соцсетях;

- пользователи каких соцсетей наиболее активны;

- какие материалы вызывают интерес;

- какие разделы сайта способствуют распространению контента.

Для того, чтобы узнать в GA, как пользователи взаимодействуют с виджетами, flash-элементами и играми, Анатолий посоветовал скачать с code.google.com специальный компонент для flash и установить.

Следующим слово взял Петр Митюшкин (SKCG) с докладом «Измерения маркетинга в социальных медиа. Домашняя работа, которую забыл сделать SMM-специалист». По словам Петра, на официальной странице бренда в соцсетях следует отслеживать то же самое, что и на обычном сайте: например, подписка на новости, получение промо-кода для каких-либо услуг, запись на тест-драйв (для автомобильных салонов).

Как следует из Twitter-ленты наиболее запоминающимся выступлением  секции стал доклад Антона Терехова (ichiba) «KPI в управлении клиентскими базами данных и приемы RFM - сегментации для интернет-магазинов».

Свое выступление Антон начал с описания «ценного» клиента - это клиент, совершивший покупку в прошлом, и ожидается, что он совершит ее в будущем. На разноценных клиентов стоит и тратить время по-разному.

Хорошего клиента можно определить по показателю Life Time Value (LTV). Данная метрика не только показывает, из каких рекламных источников приходят наиболее ценные клиенты, но и помогает понять, на каком этапе происходит наибольший отток клиентов, и сформировать трансформационную цепочку. 

Для бюджетирования интернет-магазина Антон посоветовал сделать следующее:

- определить шаг сегментации (основной фактор – средний интервал между повторными покупками),

- посчитать конверсию второй раз (из тех, кто сделал заказ №1 в период N, выбрать тех, кто сделал заказ №2 в период N+1).

http://fotki.yandex.ru/users/lepninka/view/660435/?page=10

Чтобы рассчитать вероятность, когда клиент может совершить следующую покупку, можно использовать принцип бинарной сегментации:

Период

Q1

Q2

Q3

Q4

Вес клиента

Вес периода

1

2

4

8


Стабильный клиент

1

1

0

1

1+2+8=11

Новичок

0

0

0

1

8

Плохой клиент

1

0

0

0

1

Разбиваем необходимый период на части (например, год на 4 квартала), каждому Q присуждается определенный коэффицент, причем каждый следующий показатель вдвое больше предыдущего. Если клиент совершил покупку в каком-либо квартале, ставим 1, если нет – 0. Затем для каждого клиента складываем вес тех кварталов, когда была совершена покупка, и тем самым получаем его собственный вес. Чем больше вес клиента, тем больше вероятность покупки в ближайший период.

Если же период между покупками клиента становится все больше, надо его «задобрить» - дать подарок, скидку и т.д. Но если клиент стабилен, делать ничего не следует.

Для более продуктивной работы следует составить «поведенческий» профайл клиента (когда посещает сайт, покупает, обращается в службу поддержки и т.д.) и затем описать следующее:

- обычное поведение клиента,

- желаемое поведение клиента.

Работать надо с теми, кто отклоняется от нормы. Тратить деньги нужно не на стабильных клиентов, а на тех, кто находится в процессе изменения поведения. Для разных клиентов, выбираем разные стратегии:

- поднимаем историю по ушедшим клиентам, выявляем изменения до их ухода, разрабатываем стратегию мер для клиентов, у которых намечаются аналогичные изменения,

- то же самое делаем с лучшими клиентами, и применяем полученные знания для тех, кто немного не дотягивает до данного уровня.

В конце доклада Антон подытожил вышесказанное, еще раз напомнив о необходимости использования показателя LTV и построения трансформационной цепочки для переходных клиентов.

Однако самое интересное участников конференции ждало впереди – а именно, выступление гуру веб-аналитики Авинаша Кошика, обзор которого появится очень-очень скоро.

Читайте также: iMetrics: веб-аналитика – это не цифры…


(Нет голосов)
Читайте нас в Telegram - digital_bar

Случилось что-то важное? Поделитесь новостью с редакцией.


Новые 
Новые
Лучшие
Старые
Сообщество
Подписаться 
Подписаться на дискуссию:
E-mail:
ОК
Вы подписаны на комментарии
Ошибка. Пожалуйста, попробуйте ещё раз.
Отправить отзыв
    ПОПУЛЯРНЫЕ ОБСУЖДЕНИЯ НА SEONEWS
    Рейтинг Известности 2018: старт народного голосования
    Михаил Р
    1
    комментарий
    0
    читателей
    Полный профиль
    Михаил Р - 1. Demis 2. кокс 3. Ашманов 4. Скобеев 5. Digital Strategy
    Тест: Кто как пробежал, или Итоги клиентского рейтинга SEOnews 2018
    Анна Макарова
    338
    комментариев
    0
    читателей
    Полный профиль
    Анна Макарова - Друзья, спасибо всем за участие! Мы определили победителей. Кто ими стал - вы найдете по ссылке: www.seonews.ru/events/darim-knigi-ot-mif-pobediteli-opredeleny/ Если вы стали одним из победителей, обязательно свяжитесь с нами по указанной в новости (по ссылке выше) почте. Всем хороших выходных! =)
    SEO глазами клиентов 2018
    Артур Якушев
    1
    комментарий
    0
    читателей
    Полный профиль
    Артур Якушев - >сейчас же сложно найти агентства, которые специализируются только на SEO Не так и сложно найти нас www.msk.lapkinlab.ru
    Рейтинг Известности 2018: второй этап народного голосования
    Константин Сокол
    3
    комментария
    0
    читателей
    Полный профиль
    Константин Сокол - Кто был ответственный за дизайн таблицы голосования? Копирайтер?
    Комплексный аудит интернет-магазина от «Ашманов и партнеры». Часть 1
    Александр Сова
    1
    комментарий
    0
    читателей
    Полный профиль
    Александр Сова - А вот и сеошники подъехали, покидать на вентилятор :D
    Кейс: вывод лендинга по изготовлению флагов на заказ в ТОП 1 по Санкт-Петербургу
    utka21
    4
    комментария
    0
    читателей
    Полный профиль
    utka21 - Кейс как кейс. Для некоторых станет вполне возможно полезным. ( Для конкурентов точно) . А вот с комментариями , что то пошло не так )
    Не очень удачный кейс продвижения сайта по услуге «Трезвый водитель» в Москве
    Кирилл Щербаков
    3
    комментария
    0
    читателей
    Полный профиль
    Кирилл Щербаков - "даже пришлось подключить отслеживание звонков с сайта" "Даже" - как будто это что-то нереальное
    Как использовать Python для LSI-копирайтинга
    Evgeny Montana
    6
    комментариев
    0
    читателей
    Полный профиль
    Evgeny Montana - спасибо)
    Стартовал сбор заявок на участие в рейтинге «Известность бренда SEO-компаний 2018»
    Артем Первухин
    1
    комментарий
    0
    читателей
    Полный профиль
    Артем Первухин - Make KINETICA Great Again!
    Эксперимент: как уникальность контента влияет на продвижение сайта
    Ilia Nazmutdinov
    2
    комментария
    0
    читателей
    Полный профиль
    Ilia Nazmutdinov - Кстати, ПФ не работают на нулевом трафике. Пока на сайт не льются тысячи показов по одним и тем же запросам влияние оказывает ток ссылочное\внешнее и внутреннее\ и внутренняя оптимизация.
    ТОП КОММЕНТАТОРОВ
    Комментариев
    910
    Комментариев
    834
    Комментариев
    554
    Комментариев
    540
    Комментариев
    483
    Комментариев
    373
    Комментариев
    338
    Комментариев
    262
    Комментариев
    241
    Комментариев
    171
    Комментариев
    156
    Комментариев
    137
    Комментариев
    121
    Комментариев
    97
    Комментариев
    97
    Комментариев
    97
    Комментариев
    96
    Комментариев
    80
    Комментариев
    67
    Комментариев
    61
    Комментариев
    60
    Комментариев
    59
    Комментариев
    57
    Комментариев
    55
    Комментариев
    54

    Отправьте отзыв!
    Отправьте отзыв!